Download Free Anatomical Adaptations Of Halophytes Book in PDF and EPUB Free Download. You can read online Anatomical Adaptations Of Halophytes and write the review.

This book describes important anatomical adaptations in halophytes, based on a large review of relevant literature (since the 17th century) and recent research findings. Scientists involved in the study of plant biology, from a molecular to ecosystemic level, will find information about all major structural strategies of salt tolerant plants. The book starts with an introductory theoretical background, where several aspects related to the definition and classification of halophytes and saline environments are included. Major anatomical adaptations are then grouped around major concepts: succulence, tracheoidioblasts, salt secretion, Kranz anatomy, successive cambia, and bulliform cells. Each of them is treated following a general scheme: introductory considerations, anatomical basis, and ecological implications; a review of relevant literature is then conducted and the text is supported by a large number of figures, especially ink drawings and color micrographs.
Highlights the potential of biosaline agriculture in a changing environment Covers all important topics related to halophyte biology including biochemistry, genetics and genomics Provides information on potential use of halophytes Each topic is explained in detail and examined from various angles More than 100 contributions by international experts
Changing desert areas for land use implies a lot of ecological problems. These and related ones are dealt with in this book covering various interdisciplinary and international aspects. Large areas in arid and semi-arid regions are already polluted in various ways. One of the biggest problems is the anthropogenic salinization by inadequate means of agriculture and irrigation. Additionally, most arid areas in the world are dramatically overgrazed. Methods and practices of a sustainable land use in deserts are urgently needed in many arid regions. This book gives a broad survey on some of the affected regions of the world as well as some case studies from elsewhere (Aral Sea, Negev desert, Namib desert etc.). Thus, basic and applied sciences are brought together. Water management in deserts, grazing systems or reclamation of desertified areas are among the topics of this book, as well as social and economic aspects.
This book contains current knowledge and the most recent developments in the field of halophyte biology, ecology, and potential uses. Halophytes are characterized as plants that can survive and complete their life cycle in highly saline environments. This book explores the adaptive mechanisms and special features of halophytes that allow them to grow in environments that are unsuitable for conventional crops and considers their role as a source of food, fuel, fodder, fiber, essential oils, and medicines. Halophytes and Climate Change includes coverage of: - Special morphological, anatomical, and physiological features of halophytes - Ion accumulation patterns and homeostasis in halophytes - Potential use of halophytes in the remediation of saline soil - Growth and physiological response and tolerance to toxicity and drought - Mangrove ecology, physiology, and adaptation Written by a team of international authors and presented in full color, this book is an essential resource for researchers in the fields of plant physiology, ecology, soil science, environmental science, botany, and agriculture.
Biology of Halophytes is a monograph on the biological aspects of halophytes and their behavior under saline conditions. It explores the physioecological characteristics of halophytes, such as reproduction, growth, metabolism, water relations, mineral nutrition, salt transport, salt secretion, and salt resistance. It also provides ecological information on higher marine plants, particularly submerged angiosperms, mangroves, and high coast plants. Organized into 16 chapters, this volume begins with an overview of sources of salinity and the development and nature of salines and salt-affected soils. It proceeds with a discussion of the classification of halophytes, their mutual relationships, distribution, and sociology. It also summarizes autecological information on some terrestrial halophytes and introduces the reader to the formative effects of salinity, interrelationships between plants and spatial distribution within the community, ion transport and mineral nutrition, and regulation of salt content of shoots, before concluding with a short review on ecotypic differentiation in halophytes. This book will be a valuable resource for advanced students, as well as teachers of plant and environmental sciences.
Salinity and water stress limit crop productivity worldwide and generate substantial economic losses each year, yet innovative research on crop and natural resource management can reveal cost-effective ways in which farmers can increase both their productivity and their income. Presenting recent research findings on salt stress, water stress and stress-adapted plants, this book offers insights into new strategies for increasing the efficiency of crops under stressful environments. The strategies are based on conventional breeding and advanced molecular techniques used by plant physiologists, and are discussed using specific case studies to illustrate their potential. The book emphasizes the effects of environmental factors on specific stages of plant development, and discusses the role of plant growth regulators, nutrients, osmoprotectants and antioxidants in counteracting their adverse affects. Synthesising updated information on mechansisms of stress tolerance at cell, tissue and whole-plant level, this book provides a useful reference text for post graduate students and researchers involved in the fields of stress physiology and plant physiology in general, with additional readership amongst researchers in horticulture, agronomy, crop science, conservation, environmental management and ecological restoration.
PHYSIOLOGY OF SALT STRESS IN PLANTS Discover how soil salinity affects plants and other organisms and the techniques used to remedy the issue In Physiology of Salt Stress in Plants, an editorial team of internationally renowned researchers delivers an extensive exploration of the problem of soil salinity in modern agricultural practices. It also discusses the social and environmental issues caused by salt stress. The book covers the impact of salt on soil microorganisms, crops, and other plants, and presents that information alongside examinations of salt’s effects on other organisms, including aquatic fauna, terrestrial animals, and human beings. Physiology of Salt Stress in Plants describes the morphological, anatomical, physiological, and biochemical dimensions of increasing soil salinity. It also discusses potential remedies and encourages further thought and exploration of this issue. Readers are encouraged to consider less hazardous fertilizers and pesticides, to use safer doses, and to explore and work upon salt resistant varieties of plants. Readers will also benefit from the inclusion of: Thorough introductions to salt stress perception and toxicity levels and the effects of salt stress on the physiology of crop plants at a cellular level Explorations of the effects of salt stress on the biochemistry of crop plants and salt ion transporters in crop plants at a cellular level Practical discussions of salt ion and nutrient interactions in crop plants, including prospective signalling, and the effects of salt stress on the morphology, anatomy, and gene expression of crop plants An examination of salt stress on soil chemistry and the plant-atmosphere continuum Perfect for researchers, academics, and students working and studying in the fields of agriculture, botany, entomology, biotechnology, soil science, and plant physiology, Physiology of Salt Stress in Plants will also earn a place on the bookshelves of agronomists, crop scientists, and plant biochemists.
In biology, the very big global and thevery small molecular issues currently appear to be in the limelight ofpublic interest and research funding policies. They are in danger of drifting apart from each other. They apply very coarse and very fine scaling, respectively, but coherence is lost when the various intermediate levels of different scales are neglected. Regarding SALINITY we are clearly dealing with a global problem, which due to progressing salinization of arable land is of vital interest for society. Explanations and basic understanding as well as solutions and remedies may finally lie at the molecular level. It is a general approach in science to look for understanding of any system under study at the next finer (or "lower") level of scaling. This in itself shows that we need a whole ladder of levels with increasingly finer steps from the global impact to the molecular bases of SALINITY relations. It is in this vein that the 22 chapters of this book aim at providing an integrated view of SALINITY.
Handbook of Bioremediation: Physiological, Molecular and Biotechnological Interventions discusses the mechanisms of responding to inorganic and organic pollutants in the environment using different approaches of phytoremediation and bioremediation. Part One focuses specifically on inorganic pollutants and the use of techniques such as metallothionein-assisted remediation, phytoextraction and genetic manipulation. Part Two covers organic pollutants and consider topics such as plant enzymes, antioxidant defense systems and the remediation mechanisms of different plant species. This comprehensive volume is a must-read for researchers interested in plant science, agriculture, soil science and environmental science. The techniques covered in this book will ensure scientists have the knowledge to practice effective bioremediation techniques themselves. - Provides a comprehensive review of the latest advances in bioremediation of organic and inorganic pollutants - Discusses a range of different phytoremediation techniques - Evaluates the role of genomics and bioinformatics within bioremediation
Intended as a text for upper-division undergraduates, graduate students and as a potential reference, this broad-scoped resource is extensive in its educational appeal by providing a new concept-based organization with end-of-chapter literature references, self-quizzes, and illustration interpretation. The concept-based, pedagogical approach, in contrast to the classic discipline-based approach, was specifically chosen to make the teaching and learning of plant anatomy more accessible for students. In addition, for instructors whose backgrounds may not primarily be plant anatomy, the features noted above are designed to provide sufficient reference material for organization and class presentation. This text is unique in the extensive use of over 1150 high-resolution color micrographs, color diagrams and scanning electron micrographs. Another feature is frequent side-boxes that highlight the relationship of plant anatomy to specialized investigations in plant molecular biology, classical investigations, functional activities, and research in forestry, environmental studies and genetics, as well as other fields. Each of the 19 richly-illustrated chapters has an abstract, a list of keywords, an introduction, a text body consisting of 10 to 20 concept-based sections, and a list of references and additional readings. At the end of each chapter, the instructor and student will find a section-by-section concept review, concept connections, concept assessment (10 multiple-choice questions), and concept applications. Answers to the assessment material are found in an appendix. An index and a glossary with over 700 defined terms complete the volume.