Download Free Analyzing Uncertainty In Civil Engineering Book in PDF and EPUB Free Download. You can read online Analyzing Uncertainty In Civil Engineering and write the review.

This volume addresses the issue of uncertainty in civil engineering from design to construction. Failures do occur in practice. Attributing them to a residual system risk or a faulty execution of the project does not properly cover the range of causes. A closer scrutiny of the adopted design, the engineering model, the data, the soil-construction-interaction and the model assumptions is required. Usually, the uncertainties in initial and boundary conditions are abundant. Current engineering practice often leaves these issues aside, despite the fact that new scientific tools have been developed in the past decades that allow a rational description of uncertainties of all kinds, from model uncertainty to data uncertainty. It is the aim of this volume to have a critical look at current engineering risk concepts in order to raise awareness of uncertainty in numerical computations, shortcomings of a strictly probabilistic safety concept, geotechnical models of failure mechanisms and their implications for construction management, execution, and the juristic question of responsibility. In addition, a number of the new procedures for modelling uncertainty are explained. The book is a result of a collaborate effort of mathematicians, engineers and construction managers who met regularly in a post graduate seminar at the University of Innsbruck during the past years.
Uncertainty has been of concern to engineers, managers and . scientists for many centuries. In management sciences there have existed definitions of uncertainty in a rather narrow sense since the beginning of this century. In engineering and uncertainty has for a long time been considered as in sciences, however, synonymous with random, stochastic, statistic, or probabilistic. Only since the early sixties views on uncertainty have ~ecome more heterogeneous and more tools to model uncertainty than statistics have been proposed by several scientists. The problem of modeling uncertainty adequately has become more important the more complex systems have become, the faster the scientific and engineering world develops, and the more important, but also more difficult, forecasting of future states of systems have become. The first question one should probably ask is whether uncertainty is a phenomenon, a feature of real world systems, a state of mind or a label for a situation in which a human being wants to make statements about phenomena, i. e. , reality, models, and theories, respectively. One cart also ask whether uncertainty is an objective fact or just a subjective impression which is closely related to individual persons. Whether uncertainty is an objective feature of physical real systems seems to be a philosophical question. This shall not be answered in this volume.
This volume addresses the issue of uncertainty in civil engineering from design to construction. Failures do occur in practice. Attributing them to a residual system risk or a faulty execution of the project does not properly cover the range of causes. A closer scrutiny of the adopted design, the engineering model, the data, the soil-construction-interaction and the model assumptions is required. Usually, the uncertainties in initial and boundary conditions are abundant. Current engineering practice often leaves these issues aside, despite the fact that new scientific tools have been developed in the past decades that allow a rational description of uncertainties of all kinds, from model uncertainty to data uncertainty. It is the aim of this volume to have a critical look at current engineering risk concepts in order to raise awareness of uncertainty in numerical computations, shortcomings of a strictly probabilistic safety concept, geotechnical models of failure mechanisms and their implications for construction management, execution, and the juristic question of responsibility. In addition, a number of the new procedures for modelling uncertainty are explained. The book is a result of a collaborate effort of mathematicians, engineers and construction managers who met regularly in a post graduate seminar at the University of Innsbruck during the past years.
With the expansion of new technologies, materials, and the design of complex systems, the expectations of society upon engineers are becoming larger than ever. Engineers make critical decisions with potentially high adverse consequences. The current political, societal, and financial climate requires engineers to formally consider the factors of uncertainty (e.g., floods, earthquakes, winds, environmental risks) in their decisions at all levels. Uncertainty Modeling and Analysis in Civil Engineering provides a thorough report on the immediate state of uncertainty modeling and analytical methods for civil engineering systems, presenting a toolbox for solving problems in real-world situations. Topics include Neural networks Genetic algorithms Numerical modeling Fuzzy sets and operations Reliability and risk analysis Systems control Uncertainty in probability estimates This compendium is a considerable reference for civil engineers as well as for engineers in other disciplines, computer scientists, general scientists, and students.
WIDTH: 405pt; BORDER-COLLAPSE: collapse border=0 cellSpacing=0 cellPadding=0 width=540> WIDTH: 405pt; mso-width-source: userset; mso-width-alt: 19748 width=540> HEIGHT: 31.5pt height=42> BORDER-BOTTOM: #f0f0f0; BORDER-LEFT: #f0f0f0; BACKGROUND-COLOR: transparent; WIDTH: 405pt; HEIGHT: 31.5pt; BORDER-TOP: #f0f0f0; BORDER-RIGHT: #f0f0f0 class=xl65 height=42 width=540>GSP 229 contains 54 papers on risk and uncertainty in foundation engineering presented in honor of Fred H. Kulhawy.
Table of contents: Stochastic methods in nonlinear structural dynamics.- Stochastic models of uncertainties in computational structural dynamics and structural acoustics.- The tale of stochastic linearization techniques: over half a century of progress.- Comprehensive modeling of uncertain systems using fuzzy set theory.- Bounding uncertainty in civil engineering: theoretical background and applications.- Combined methods in nondeterministic mechanics. In this book the current state of the art of nondeterministic mechanics in its various forms is presented. The topics range from stochastic problems to fuzzy sets; from linear to nonlinear problems; from specific methodologies to combinations of various techniques; from theoretical considerations to practical applications. It is specially designed to illuminate the various aspects of the three methodologies (probabilistic or stochastic modelling, fuzzy sets based analysis, antioptimization of structures) to deal with various uncertainties and deepen the discussion of their pros and cons.
This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.
Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.
Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.
The book exposes three alternative and competing approaches to uncertainty analysis in engineering. It is composed of some essays on various sub-topics like random vibrations, probabilistic reliability, fuzzy-sets-based analysis, unknown-but-bounded variables, stochastic linearization, possible difficulties with stochastic analysis of structures.