Download Free Analyzing Social Networks Book in PDF and EPUB Free Download. You can read online Analyzing Social Networks and write the review.

Written by a stellar team of experts, Analyzing Social Networks is a practical book on how to collect, visualize, analyze and interpret social network data with a particular emphasis on the use of the software tools UCINET and Netdraw. The book includes a clear and detailed introduction to the fundamental concepts of network analyses, including centrality, subgroups, equivalence and network structure, as well as cross-cutting chapters that helpfully show how to apply network concepts to different kinds of networks. Written using simple language and notation with few equations, this book masterfully covers the research process, including: · The initial design stage · Data collection and manipulation · Measuring key variables · Exploration of structure · Hypothesis testing · Interpretation This is an essential resource for students, researchers and practitioners across the social sciences who want to use network analysis as part of their research. Available with Perusall—an eBook that makes it easier to prepare for class Perusall is an award-winning eBook platform featuring social annotation tools that allow students and instructors to collaboratively mark up and discuss their SAGE textbook. Backed by research and supported by technological innovations developed at Harvard University, this process of learning through collaborative annotation keeps your students engaged and makes teaching easier and more effective. Learn more.
Analyzing Social Media Networks with NodeXL offers backgrounds in information studies, computer science, and sociology. This book is divided into three parts: analyzing social media, NodeXL tutorial, and social-media network analysis case studies. Part I provides background in the history and concepts of social media and social networks. Also included here is social network analysis, which flows from measuring, to mapping, and modeling collections of connections. The next part focuses on the detailed operation of the free and open-source NodeXL extension of Microsoft Excel, which is used in all exercises throughout this book. In the final part, each chapter presents one form of social media, such as e-mail, Twitter, Facebook, Flickr, and Youtube. In addition, there are descriptions of each system, the nature of networks when people interact, and types of analysis for identifying people, documents, groups, and events. - Walks you through NodeXL, while explaining the theory and development behind each step, providing takeaways that can apply to any SNA - Demonstrates how visual analytics research can be applied to SNA tools for the mass market - Includes case studies from researchers who use NodeXL on popular networks like email, Facebook, Twitter, and wikis - Download companion materials and resources at https://nodexl.codeplex.com/documentation
SOCIAL NETWORK ANALYSIS As social media dominates our lives in increasing intensity, the need for developers to understand the theory and applications is ongoing as well. This book serves that purpose. Social network analysis is the solicitation of network science on social networks, and social occurrences are denoted and premeditated by data on coinciding pairs as the entities of opinion. The book features: Social network analysis from a computational perspective using python to show the significance of fundamental facets of network theory and the various metrics used to measure the social network. An understanding of network analysis and motivations to model phenomena as networks. Real-world networks established with human-related data frequently display social properties, i.e., patterns in the graph from which human behavioral patterns can be analyzed and extracted. Exemplifies information cascades that spread through an underlying social network to achieve widespread adoption. Network analysis that offers an appreciation method to health systems and services to illustrate, diagnose, and analyze networks in health systems. The social web has developed a significant social and interactive data source that pays exceptional attention to social science and humanities research. The benefits of artificial intelligence enable social media platforms to meet an increasing number of users and yield the biggest marketplace, thus helping social networking analysis distribute better customer understanding and aiding marketers to target the right customers. Audience The book will interest computer scientists, AI researchers, IT and software engineers, mathematicians.
Analyzing the Social Web provides a framework for the analysis of public data currently available and being generated by social networks and social media, like Facebook, Twitter, and Foursquare. Access and analysis of this public data about people and their connections to one another allows for new applications of traditional social network analysis techniques that let us identify things like who are the most important or influential people in a network, how things will spread through the network, and the nature of peoples' relationships. Analyzing the Social Web introduces you to these techniques, shows you their application to many different types of social media, and discusses how social media can be used as a tool for interacting with the online public. - Presents interactive social applications on the web, and the types of analysis that are currently conducted in the study of social media - Covers the basics of network structures for beginners, including measuring methods for describing nodes, edges, and parts of the network - Discusses the major categories of social media applications or phenomena and shows how the techniques presented can be applied to analyze and understand the underlying data - Provides an introduction to information visualization, particularly network visualization techniques, and methods for using them to identify interesting features in a network, generate hypotheses for analysis, and recognize patterns of behavior - Includes a supporting website with lecture slides, exercises, and downloadable social network data sets that can be used can be used to apply the techniques presented in the book
This approachable book introduces network research in R, walking you through every step of doing social network analysis. Drawing together research design, data collection and data analysis, it explains the core concepts of network analysis in a non-technical way. The book balances an easy to follow explanation of the theoretical and statistical foundations underpinning network analysis with practical guidance on key steps like data management, preparation and visualisation. With clarity and expert insight, it: Discusses a range of statistical models including QAP and ERGM, giving you the tools to approach different types of networks Provides a fully integrated discussion of digital data and networks like Twitter, sociolab and Amazon Offers digital resources like practice datasets and worked examples that help you get to grips with R software
We live in a world that is paradoxically both small and vast; each of us is embedded in local communities and yet we are only a few 'links' away from anyone else in the world. This engaging book represents these interdependencies' positive and negative consequences, their multiple effects and the ways in which a local occurrence in one part of the world can directly affect the rest. Then it demonstrates precisely how these interactions and relationships form. This is a book for the social network novice learning how to study, think about and analyse social networks; the intermediate user, not yet familiar with some of the newer developments in the field; and the teacher looking for a range of exercises, as well as an up-to-date historical account of the field. It is divided into three clear sections: 1. historical & Background Concepts 2. Levels of Analysis 3. Advances, Extensions and Conclusions The book provides a full overview of the field - historical origins, common theoretical perspectives and frameworks; traditional and current analytical procedures and fundamental mathematical equations needed to get a foothold in the field. Available with Perusall—an eBook that makes it easier to prepare for class Perusall is an award-winning eBook platform featuring social annotation tools that allow students and instructors to collaboratively mark up and discuss their SAGE textbook. Backed by research and supported by technological innovations developed at Harvard University, this process of learning through collaborative annotation keeps your students engaged and makes teaching easier and more effective. Learn more.
Social network analysis, a method for analyzing relationships between social entities, has expanded over the last decade as new research has been done in this area. How can these new developments be applied effectively in the behavioral and social sciences disciplines? In Advances in Social Network Analysis, a team of leading methodologists in network analysis addresses this issue. They explore such topics as ways to specify the network contents to be studied, how to select the method for representing network structures, how social network analysis has been used to study interorganizational relations via the resource dependence model, how to use a contact matrix for studying the spread of disease in epidemiology, and how cohesion and structural equivalence network theories relate to studying social influence. It also offers statistical models for social support networks. Advances in Social Network Analysis is useful for researchers involved in general research methods and qualitative methods, and who are interested in psychology and sociology.
This sparkling Handbook offers an unrivalled resource for those engaged in the cutting edge field of social network analysis. Systematically, it introduces readers to the key concepts, substantive topics, central methods and prime debates. Among the specific areas covered are: Network theory Interdisciplinary applications Online networks Corporate networks Lobbying networks Deviant networks Measuring devices Key Methodologies Software applications. The result is a peerless resource for teachers and students which offers a critical survey of the origins, basic issues and major debates. The Handbook provides a one-stop guide that will be used by readers for decades to come.
Does your startup rely on social network analysis? This concise guide provides a statistical framework to help you identify social processes hidden among the tons of data now available. Social network analysis (SNA) is a discipline that predates Facebook and Twitter by 30 years. Through expert SNA researchers, you'll learn concepts and techniques for recognizing patterns in social media, political groups, companies, cultural trends, and interpersonal networks. You'll also learn how to use Python and other open source tools—such as NetworkX, NumPy, and Matplotlib—to gather, analyze, and visualize social data. This book is the perfect marriage between social network theory and practice, and a valuable source of insight and ideas. Discover how internal social networks affect a company’s ability to perform Follow terrorists and revolutionaries through the 1998 Khobar Towers bombing, the 9/11 attacks, and the Egyptian uprising Learn how a single special-interest group can control the outcome of a national election Examine relationships between companies through investment networks and shared boards of directors Delve into the anatomy of cultural fads and trends—offline phenomena often mediated by Twitter and Facebook
This book uses literature as a wrench to pry open social networks and to ask different questions than have been asked about social networks previously. The book emphasizes the story-telling aspect of social networks, as well as the connection between narrative and social networks by incorporating narrative, dynamic networks, and time. Thus, it constructs a bridge between literature, digital humanities, and social networks. This book is a pioneering work that attempts to express social and philosophic constructs in mathematical terms. The material used to test the algorithms is texts intended for performance, such as plays, film scripts, and radio plays; mathematical representations of the texts, or “literature networks”, are then used to analyze the social networks found in the respective texts. By using literature networks and their accompanying narratives, along with their supporting analyses, this book allows for a novel approach to social network analysis.