Download Free Analyzing Environmental Data Book in PDF and EPUB Free Download. You can read online Analyzing Environmental Data and write the review.

Environmental statistics is a rapidly growing field, supported by advances in digital computing power, automated data collection systems, and interactive, linkable Internet software. Concerns over public and ecological health and the continuing need to support environmental policy-making and regulation have driven a concurrent explosion in environmental data analysis. This textbook is designed to address the need for trained professionals in this area. The book is based on a course which the authors have taught for many years, and prepares students for careers in environmental analysis centered on statistics and allied quantitative methods of data evaluation. The text extends beyond the introductory level, allowing students and environmental science practitioners to develop the expertise to design and perform sophisticated environmental data analyses. In particular, it: Provides a coherent introduction to intermediate and advanced methods for modeling and analyzing environmental data. Takes a data-oriented approach to describing the various methods. Illustrates the methods with real-world examples Features extensive exercises, enabling use as a course text. Includes examples of SAS computer code for implementation of the statistical methods. Connects to a Web site featuring solutions to exercises, extra computer code, and additional material. Serves as an overview of methods for analyzing environmental data, enabling use as a reference text for environmental science professionals. Graduate students of statistics studying environmental data analysis will find this invaluable as will practicing data analysts and environmental scientists including specialists in atmospheric science, biology and biomedicine, chemistry, ecology, environmental health, geography, and geology.
"Environmental Data Analysis with MatLab" is for students and researchers working to analyze real data sets in the environmental sciences. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often-noisy data drawn from a broad range of sources. This book teaches the basics of the underlying theory of data analysis, and then reinforces that knowledge with carefully chosen, realistic scenarios. MatLab, a commercial data processing environment, is used in these scenarios; significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. The book, though written in a self-contained way, is supplemented with data sets and MatLab scripts that can be used as a data analysis tutorial. It is well written and outlines a clear learning path for researchers and students. It uses real world environmental examples and case studies. It has MatLab software for application in a readily-available software environment. Homework problems help user follow up upon case studies with homework that expands them.
Environmental Data Analysis is an introductory statistics textbook for environmental science. It covers descriptive, inferential and predictive statistics, centred on the Generalized Linear Model. The key idea behind this book is to approach statistical analyses from the perspective of maximum likelihood, essentially treating most analyses as (multiple) regression problems. The reader will be introduced to statistical distributions early on, and will learn to deploy models suitable for the data at hand, which in environmental science are often not normally distributed. To make the initially steep learning curve more manageable, each statistical chapter is followed by a walk-through in a corresponding R-based how-to chapter, which reviews the theory and applies it to environmental data. In this way, a coherent and expandable foundation in parametric statistics is laid, which can be expanded in advanced courses.The content has been “field-tested” in several years of courses on statistics for Environmental Science, Geography and Forestry taught at the University of Freiburg.
This easy-to-understand introduction emphasizes the areas of probability theory and statistics that are important in environmental monitoring, data analysis, research, environmental field surveys, and environmental decision making. It communicates basic statistical theory with very little abstract mathematical notation, but without omitting importa
Most environmental data involve a large degree of complexity and uncertainty. Environmental Data Analysis is created to provide modern quantitative tools and techniques designed specifically to meet the needs of environmental sciences and related fields. This book has an impressive coverage of the scope. Main techniques described in this book are models for linear and nonlinear environmental systems, statistical & numerical methods, data envelopment analysis, risk assessments and life cycle assessments. These state-of-the-art techniques have attracted significant attention over the past decades in environmental monitoring, modeling and decision making. Environmental Data Analysis explains carefully various data analysis procedures and techniques in a clear, concise, and straightforward language and is written in a self-contained way that is accessible to researchers and advanced students in science and engineering. This is an excellent reference for scientists and engineers who wish to analyze, interpret and model data from various sources, and is also an ideal graduate-level textbook for courses in environmental sciences and related fields. Contents: Preface Time series analysis Chaos and dynamical systems Approximation Interpolation Statistical methods Numerical methods Optimization Data envelopment analysis Risk assessments Life cycle assessments Index
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.
Providing a solid foundation for twenty-first-century scientists and engineers, Data Analysis and Statistics for Geography, Environmental Science, and Engineering guides readers in learning quantitative methodology, including how to implement data analysis methods using open-source software. Given the importance of interdisciplinary work in sustain
Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses
Professionals in environmental health and safety (EHS) management use statistics every day in making decisions. This book was created to provide the quantitative tools and techniques necessary to make important EHS assessments. Readers need not be statistically or mathematically inclined to make the most of this book-mathematical derivations are kept to a minimum and subjects are approached in a simple and factual manner, complemented with plenty of real-world examples. Chapters 1-3 cover knowledge of basic statistical concepts such as presentation of data, measurements of location and dispersion, and elementary probability and distributions. Data gathering and analysis topics including sampling methods, sampling theory, testing, and interference as well as skills for critically evaluating published numerical material is presented in Chapters 4-6. Chapters 7-11 discuss information generation topics-regression and correlation analysis, time series, linear programming, network and Gnatt charting, and decision analysis-tools that can be used to convert data into meaningful information. Chapter 12 features six examples of projects made successful through statistical approaches being applied. Readers can use these approaches to solve their own unique problems. Whether you are a EHS professional, manager, or student, Health, Safety, and Environmental Data Analysis: A Business Approach will help you communicate statistical data effectively.
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.