Download Free Analyzing Analytics Book in PDF and EPUB Free Download. You can read online Analyzing Analytics and write the review.

This book aims to achieve the following goals: (1) to provide a high-level survey of key analytics models and algorithms without going into mathematical details; (2) to analyze the usage patterns of these models; and (3) to discuss opportunities for accelerating analytics workloads using software, hardware, and system approaches. The book first describes 14 key analytics models (exemplars) that span data mining, machine learning, and data management domains. For each analytics exemplar, we summarize its computational and runtime patterns and apply the information to evaluate parallelization and acceleration alternatives for that exemplar. Using case studies from important application domains such as deep learning, text analytics, and business intelligence (BI), we demonstrate how various software and hardware acceleration strategies are implemented in practice. This book is intended for both experienced professionals and students who are interested in understanding core algorithms behind analytics workloads. It is designed to serve as a guide for addressing various open problems in accelerating analytics workloads, e.g., new architectural features for supporting analytics workloads, impact on programming models and runtime systems, and designing analytics systems.
This book starts with an introduction to process modeling and process paradigms, then explains how to query and analyze process models, and how to analyze the process execution data. In this way, readers receive a comprehensive overview of what is needed to identify, understand and improve business processes. The book chiefly focuses on concepts, techniques and methods. It covers a large body of knowledge on process analytics – including process data querying, analysis, matching and correlating process data and models – to help practitioners and researchers understand the underlying concepts, problems, methods, tools and techniques involved in modern process analytics. Following an introduction to basic business process and process analytics concepts, it describes the state of the art in this area before examining different analytics techniques in detail. In this regard, the book covers analytics over different levels of process abstractions, from process execution data and methods for linking and correlating process execution data, to inferring process models, querying process execution data and process models, and scalable process data analytics methods. In addition, it provides a review of commercial process analytics tools and their practical applications. The book is intended for a broad readership interested in business process management and process analytics. It provides researchers with an introduction to these fields by comprehensively classifying the current state of research, by describing in-depth techniques and methods, and by highlighting future research directions. Lecturers will find a wealth of material to choose from for a variety of courses, ranging from undergraduate courses in business process management to graduate courses in business process analytics. Lastly, it offers professionals a reference guide to the state of the art in commercial tools and techniques, complemented by many real-world use case scenarios.
Analyzing Analytics: Disrupting Journalism One Click at a Time critically examines how journalists use web analytics in their work and the implications of that use. Now that web analytics has become deeply embedded in newsrooms, its impact on journalism is even more potent. Documenting the different ways web analytics has disrupted traditional journalism, the book provides a timely review of what we know so far about the place of web analytics in reporting, and maps a future research agenda. It conceptualizes web analytics as an object of journalism where audiences, businesses, technologists, and journalists confront one another, negotiating the contours of digital journalism in the process. Including newly developed theoretical frameworks as well as case studies and empirical projects, the book is ideal for journalism students, researchers, and professional journalists.
FCA is an important formalism that is associated with a variety of research areas such as lattice theory, knowledge representation, data mining, machine learning, and semantic Web. It is successfully exploited in an increasing number of application domains such as software engineering, information retrieval, social network analysis, and bioinformatics. Its mathematical power comes from its concept lattice formalization in which each element in the lattice captures a formal concept while the whole structure represents a conceptual hierarchy that offers browsing, clustering and association rule mining. Complex data analytics refers to advanced methods and tools for mining and analyzing data with complex structures such as XML/Json data, text and image data, multidimensional data, graphs, sequences and streaming data. It also covers visualization mechanisms used to highlight the discovered knowledge. This edited book examines a set of important and relevant research directions in complex data management, and updates the contribution of the FCA community in analyzing complex and large data such as knowledge graphs and interlinked contexts. For example, Formal Concept Analysis and some of its extensions are exploited, revisited and coupled with recent processing parallel and distributed paradigms to maximize the benefits in analyzing large data.
Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
A book at the intersection of data science and media studies, presenting concepts and methods for computational analysis of cultural data. How can we see a billion images? What analytical methods can we bring to bear on the astonishing scale of digital culture--the billions of photographs shared on social media every day, the hundreds of millions of songs created by twenty million musicians on Soundcloud, the content of four billion Pinterest boards? In Cultural Analytics, Lev Manovich presents concepts and methods for computational analysis of cultural data. Drawing on more than a decade of research and projects from his own lab, Manovich offers a gentle, nontechnical introduction to the core ideas of data analytics and discusses the ways that our society uses data and algorithms.
Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.
A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
Companies need more than just web analysts and data-savvy marketers to be successful–they need action heroes! While most of us never battle evil scientists or defuse nuclear warheads, successful web analysts benefit from the same attributes that fictional action heroes embody. As a web analyst, your main goal is to improve your organization’s online performance. You can become an “action hero” by translating analysis insights into action that generates significant returns for your company. How you approach analysis is critical to your overall success. In this book, web analytics expert Brent Dykes addresses the unique challenges facing analysts and online marketers working within small and large companies, teaching you how to move beyond reporting and toward analysis to drive action and change. Taking a principle-based rather than a tool-specific approach, Brent introduces you to the Action Hero Framework that breaks down the analysis process into three key stages: Prioritize (what to analyze), Analyze (how to analyze), and Mobilize (how to drive action). And he reinforces these topics with real-world examples and practical tips from seasoned analysts at leading companies. Defines the type of environment in which action heroes thrive–not just survive–as well as how to defeat the villains of web analytics that stand in the way Arms web professionals with a strategic framework for executing online analysis, as well as an arsenal of analysis techniques Reveals how companies need to be both data-driven and action-agile to drive business value from web analytics For more action hero resources and information, check out the book’s companion site at www.Analyticshero.com. "The ideas in this book will take you days (or even weeks) to work your way through, and they fly in the face of the emotional approach to marketing. The question is: would you rather have your competition lead the way with data and science when it comes to reaching your market, or are you going to go first? That's how it is with action heroes--no guts, no glory." - Seth Godin Author We Are All Weird "Don't let the jaunty, breezy style of this book throw you off. Brent successfully - and entertainingly - packs years of experience into these pages along with case studies and insightful help on getting the most out of web analytics, adding value to your company and boosting your career trajectory." - Jim Sterne Founder of eMetrics Marketing Optimization Summit, author of "Social Media Metrics" and Chairman of the Digital Analytics Association
This book provides insights into smart ways of computer log data analysis, with the goal of spotting adversarial actions. It is organized into 3 major parts with a total of 8 chapters that include a detailed view on existing solutions, as well as novel techniques that go far beyond state of the art. The first part of this book motivates the entire topic and highlights major challenges, trends and design criteria for log data analysis approaches, and further surveys and compares the state of the art. The second part of this book introduces concepts that apply character-based, rather than token-based, approaches and thus work on a more fine-grained level. Furthermore, these solutions were designed for “online use”, not only forensic analysis, but also process new log lines as they arrive in an efficient single pass manner. An advanced method for time series analysis aims at detecting changes in the overall behavior profile of an observed system and spotting trends and periodicities through log analysis. The third part of this book introduces the design of the AMiner, which is an advanced open source component for log data anomaly mining. The AMiner comes with several detectors to spot new events, new parameters, new correlations, new values and unknown value combinations and can run as stand-alone solution or as sensor with connection to a SIEM solution. More advanced detectors help to determines the characteristics of variable parts of log lines, specifically the properties of numerical and categorical fields. Detailed examples throughout this book allow the reader to better understand and apply the introduced techniques with open source software. Step-by-step instructions help to get familiar with the concepts and to better comprehend their inner mechanisms. A log test data set is available as free download and enables the reader to get the system up and running in no time. This book is designed for researchers working in the field of cyber security, and specifically system monitoring, anomaly detection and intrusion detection. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, and information systems. Forward-thinking practitioners, who would benefit from becoming familiar with the advanced anomaly detection methods, will also be interested in this book.