Download Free Analytical Chemistry Of Zirconium And Hafnium Book in PDF and EPUB Free Download. You can read online Analytical Chemistry Of Zirconium And Hafnium and write the review.

Analytical Chemistry of Zirconium and Hafnium compiles literature on the characterization and analysis of zirconium and hafnium. Various methods in studying the properties of the featured elements are presented in this book. This book also discusses the aqueous solutions of zirconium and hafnium. It then explains the methods such as dissolution of ores and alloys, detection and identification, and gravimetric determinations. This text further examines the titrimetric, electrometric, and absorptiometric methods, as well as methods of separations using ion-exchange and using solvent extraction, along with separation of hafnium from zirconium. The latter part of this text presents methods such as spectrographic analyses, X-ray analyses, and neutron activation analysis and separation of tracers. This book will come in handy for chemists and chemistry students, as well as for others interested in studying zirconium and hafnium.
Analytical Chemistry of Zirconium and Hafnium compiles literature on the characterization and analysis of zirconium and hafnium. Various methods in studying the properties of the featured elements are presented in this book. This book also discusses the aqueous solutions of zirconium and hafnium. It then explains the methods such as dissolution of ores and alloys, detection and identification, and gravimetric determinations. This text further examines the titrimetric, electrometric, and absorptiometric methods, as well as methods of separations using ion-exchange and using solvent extraction ...
The Chemistry of Titanium, Zirconium and Hafnium deals with the chemistry of titanium, zirconium, and hafnium and covers topics ranging from the occurrence and metallurgy of all three elements to their nuclear, physical, and chemical properties as well as analytical chemistry. The compounds of titanium, zirconium, and hafnium are also discussed. This volume is comprised of two chapters and opens with a historical overview and discovery of titanium, along with its occurrence and distribution, metallurgical aspects, and nuclear and physicochemical properties. The compounds of titanium are also considered, including alloys and complexes; hydrides and oxides; halides and oxyhalides; titanates and antimonides; and carbides and borides. The second chapter is devoted to zirconium and hafnium, their occurrence and metallurgy; and physical, chemical, and biological properties. Compounds of zirconium and hafnium are described, from alloys and hydrides to zirconates and hafnates; nitrides, phosphides, and arsenides; carbides, silicides, and germanides; molybdates, tungstates, halates, and perchlorates; alkoxides, mercaptides, and dithiocarbamates; and amides, alkylamides, triazenes, phthalocyanines, and bipyridyls. This book will be a valuable source of information for inorganic chemists.
This volume is part of the series on "Chemical Thermodynamics", published under the aegis of the OECD Nuclear Energy Agency. It contains a critical review of the literature on thermodynamic data for inorganic compounds of zirconium. A review team, composed of five internationally recognized experts, has critically reviewed all the scientific literature containing chemical thermodynamic information for the above mentioned systems. The results of this critical review carried out following the Guidelines of the OECD NEA Thermochemical Database Project have been documented in the present volume, which contains tables of selected values for formation and reaction thermodynamical properties and an extensive bibliography.* Critical review of all literature on chemical thermodynamics for compounds and complexes of Zr.* Tables of recommended Selected Values for thermochemical properties* Documented review procedure* Exhaustive bibliography* Intended to meet requirements of radioactive waste management community* Valuable reference source for the physical, analytical and environmental chemist.
Analysis of rocks and minerals often requires a specific approach, especially when determining rare and scattered elements, the content of which can be extremely low. This volume presents the main principles of analytical techniques most commonly used in the determination of the chemical composition of minerals and rocks. Special attention is given to methodological features and analytical schemes of various minerals, methods of mineral stripping and use of hybrid methods of analysis.
The second edition of Internal Photoemission Spectroscopy thoroughly updates this vital, practical guide to internal photoemission (IPE) phenomena and measurements. The book's discussion of fundamental physical and technical aspects of IPE spectroscopic applications is supplemented by an extended overview of recent experimental results in swiftly advancing research fields. These include the development of insulating materials for advanced SiMOS technology, metal gate materials, development of heterostructures based on high-mobility semiconductors, and more. Recent results concerning the band structure of important interfaces in novel materials are covered as well. Internal photoemission involves the physics of charge carrier photoemission from one solid to another, and different spectroscopic applications of this phenomenon to solid state heterojunctions. This technique complements conventional external photoemission spectroscopy by analyzing interfaces separated from the sample surface by a layer of a different solid or liquid. Internal photoemission provides the most straightforward, reliable information regarding the energy spectrum of electron states at interfaces. At the same time, the method enables the analysis of heterostructures relevant to modern micro- and nano-electronic devices as well as new materials involved in their design and fabrication. - First complete model description of the internal photoemission phenomena - Overview of the most reliable energy barrier determination procedures and trap characterization methods - Overview of the most recent results on band structure of high-permittivity insulating materials and their interfaces with semiconductors and metals