Download Free Analytic Theory Of The Harish Chandra C Function Book in PDF and EPUB Free Download. You can read online Analytic Theory Of The Harish Chandra C Function and write the review.

Harish-Chandra was a mathematician of great power, vision, and remarkable ingenuity. His profound contributions to the representation theory of Lie groups, harmonic analysis, and related areas left researchers a rich legacy that continues today. This book presents the proceedings of an AMS Special Session entitled, "Representation Theory and Noncommutative Harmonic Analysis: A Special Session Honoring the Memory of Harish-Chandra", which marked 75 years since his birth and 15 years since his untimely death at age 60. Contributions to the volume were written by an outstanding group of internationally known mathematicians. Included are expository and historical surveys and original research papers. The book also includes talks given at the IAS Memorial Service in 1983 by colleagues who knew Harish-Chandra well. Also reprinted are two articles entitled, "Some Recollections of Harish-Chandra", by A. Borel, and "Harish-Chandra's c-Function: A Mathematical Jewel", by S. Helgason. In addition, an expository paper, "An Elementary Introduction to Harish-Chandra's Work", gives an overview of some of his most basic mathematical ideas with references for further study. This volume offers a comprehensive retrospective of Harish-Chandra's professional life and work. Personal recollections give the book particular significance. Readers should have an advanced-level background in the representation theory of Lie groups and harmonic analysis.
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis, in honor of Gestur Ólafsson's 65th birthday, held on January 4, 2017, in Atlanta, Georgia. The articles in this volume provide fresh perspectives on many different directions within harmonic analysis, highlighting the connections between harmonic analysis and the areas of integral geometry, complex analysis, operator algebras, Lie algebras, special functions, and differential operators. The breadth of contributions highlights the diversity of current research in harmonic analysis and shows that it continues to be a vibrant and fruitful field of inquiry.
Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject.
This is the first volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: R. Ahlswede, V. Bach, V. Baladi, J. Bruna, N. Burq, X. Cabré, P.J. Cameron, Z. Chatzidakis, C. Ciliberto, G. Dal Maso, J. Denef, R. Dijkgraaf, B. Fantechi, H. Föllmer, A.B. Goncharov, A. Grigor'yan, M. Harris, R. Iturriaga, K. Johansson, K. Khanin, P. Koskela, H.W. Lenstra, Jr., F. Loeser, Y.I. Manin, N.S. Manton, Y. Meyer, I. Moerdijk, E.M. Opdam, T. Peternell, B.M.A.G. Piette, A. Reznikov, H. Schlichtkrull, B. Schmidt, K. Schmidt, C. Simó, B. Tóth, E. van den Ban, M.-F. Vignéras, O. Viro.
With the advent of heavy-ion reactions, nuclear physics has acquired a new frontier. The new heavy-ion sources operating at electrostatic accelerators and the high-energy experiments performed at Berkeley, Dubna, Manchester and Orsay, have opened up the field, and have shown us impressive new prospects. The new accelerators now under construction at Berlin, Daresbury and Darmstadt, as well as those under consideration (GANIL, Oak Ridge, etc. ) are expected to add significantly to our knowledge and understanding of nuclear properties. This applies not only to such exotic topics as the existence and lifetimes of superheavy elements, or the possibil ity of shock waves in nuclei, but also to such more mundane issues as high-spin states, new regions of deformed nuclei and friction forces. The field promises not only to produce a rich variety of interesting phenomena, but also to have wide-spread theoretical implications. Heavy-ion reactions are characterized by the large masses of the fragments, as well as the high total energy and the large total angular momentum typically involved in the collision. A purely quantum-mechanical description of such a collision process may be too complicated to be either possible or inter esting. We expect and, in some cases,know that the classical limit, the limit of geometrical optics, a quantum-statistical or a hydrodynamical description correctly account for typical features.