Download Free Analytic Methods Of Sound Field Synthesis Book in PDF and EPUB Free Download. You can read online Analytic Methods Of Sound Field Synthesis and write the review.

This book puts the focus on serving human listeners in the sound field synthesis although the approach can be also exploited in other applications such as underwater acoustics or ultrasonics. The author derives a fundamental formulation based on standard integral equations and the single-layer potential approach is identified as a useful tool in order to derive a general solution. He also proposes extensions to the single-layer potential approach which allow for a derivation of explicit solutions for circular, planar, and linear distributions of secondary sources. Based on above described formulation it is shown that the two established analytical approaches of Wave Field Synthesis and Near-field Compensated Higher Order Ambisonics constitute specific solutions to the general problem which are covered by the single-layer potential solution and its extensions.
This book puts the focus on serving human listeners in the sound field synthesis although the approach can be also exploited in other applications such as underwater acoustics or ultrasonics. The author derives a fundamental formulation based on standard integral equations and the single-layer potential approach is identified as a useful tool in order to derive a general solution. He also proposes extensions to the single-layer potential approach which allow for a derivation of explicit solutions for circular, planar, and linear distributions of secondary sources. Based on above described formulation it is shown that the two established analytical approaches of Wave Field Synthesis and Near-field Compensated Higher Order Ambisonics constitute specific solutions to the general problem which are covered by the single-layer potential solution and its extensions.
This book contains a complete and accurate mathematical treatment of the sounds of music with an emphasis on musical timbre. The book spans the range from tutorial introduction to advanced research and application to speculative assessment of its various techniques. All the contributors use a generalized additive sine wave model for describing musical timbre which gives a conceptual unity, but is of sufficient utility to be adapted to many different tasks.
This book provides a broad overview of spaciousness in music theory, from mixing and performance practice, to room acoustics, psychoacoustics and audio engineering, and presents the derivation, implementation and experimental validation of a novel type of spatial audio system. Discussing the physics of musical instruments and the nature of auditory perception, the book enables readers to precisely localize synthesized musical instruments while experiencing their timbral variance and spatial breadth. Offering interdisciplinary insights for novice music enthusiasts and experts in the field of spatial audio, this book is suitable for anyone interested in the study of music and musicology and the application of spatial audio mixing, or those seeking an overview of the state of the art in applied psychoacoustics for spatial audio.
This book considers signal processing and physical modeling meth ods for sound synthesis. Such methods are useful for example in mu sic synthesizers, computer sound cards, and computer games. Physical modeling synthesis has been commercialized for the first time about 10 years ago. Recently, it has been one of the most active research topics in musical acoustics and computer music. The authors of this book, Dr. Lutz Trautmann and Dr. Rudolf Rabenstein, are active researchers and inventors in the field of sound synthesis. Together they have developed a new synthesis technique, called the functional transformation method, which can be used for pro ducing musical sound in real time. Before this book, they have published over 20 papers on the topic in journals and conference proceedings. In this excellent textbook, the results are combined in a single volume. I believe that this will be considered an important step forward for the whole community.
Digital sound synthesis has long been approached using standard digital filtering techniques. Newer synthesis strategies, however, make use of physical descriptions of musical instruments, and allow for much more realistic and complex sound production and thereby synthesis becomes a problem of simulation. This book has a special focus on time domain finite difference methods presented within an audio framework. It covers time series and difference operators, and basic tools for the construction and analysis of finite difference schemes, including frequency-domain and energy-based methods, with special attention paid to problems inherent to sound synthesis. Various basic lumped systems and excitation mechanisms are covered, followed by a look at the 1D wave equation, linear bar and string vibration, acoustic tube modelling, and linear membrane and plate vibration. Various advanced topics, such as the nonlinear vibration of strings and plates, are given an elaborate treatment. Key features: Includes a historical overview of digital sound synthesis techniques, highlighting the links between the various physical modelling methodologies. A pedagogical presentation containing over 150 problems and programming exercises, and numerous figures and diagrams, and code fragments in the MATLAB® programming language helps the reader with limited experience of numerical methods reach an understanding of this subject. Offers a complete treatment of all of the major families of musical instruments, including certain audio effects. Numerical Sound Synthesis is suitable for audio and software engineers, and researchers in digital audio, sound synthesis and more general musical acoustics. Graduate students in electrical engineering, mechanical engineering or computer science, working on the more technical side of digital audio and sound synthesis, will also find this book of interest.
Virtual environments such as games and animated and "real" movies require realistic sound effects that can be integrated by computer synthesis. The book emphasizes physical modeling of sound and focuses on real-world interactive sound effects. It is intended for game developers, graphics programmers, developers of virtual reality systems and traini
The last decades have brought a significant increase in research on acoustic communi cation in animals. Publication of scientific papers on both empirical and theoretical aspects of this topic has greatly increased, and a new journal, Bioacoustics, is entirely devoted to such articles. Coupled with this proliferation of work is a recognition that many of the current issues are best approached with an interdisciplinary perspective, requiring technical and theoretical contributions from a number of areas of inquiry that have traditionally been separated. With the notable exception of a collection edited by Lewis (1983), there have been fewvolumes predominatelyfocused on technical issues in comparative bioacoustics to follow up the earlyworks edited by Lanyon and Tavolga (1960) and Busnel (1963). It was the tremendous growth of expertise c:()ncerning this topic in particular that provided the initial impetus to organize this volume, which attempts to present fundamental information from both theoretical and applied aspects of current bioacoustics research. While a completely comprehensive review would be impractical, this volume offers a basic treatment of a wide variety of topics aimed at providing a conceptual framework within which researchers can address their own questions. Each presentation is designed to be useful to the broadest possible spectrum of researchers, including both those currently working in any of the many and diverse disciplines of bioacoustics, and others that may be new to such studies.
This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book’s introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material.
This book represents an introduction to ecoacoustics theory, to the application of the Acoustic Complexity Indices (ACIs) to acoustic survey, and to the use of an innovative software to process acoustic data. It enables readers to comprehend the main principles that guide the recent development of ecoacoustics and offers a synthesis about the role of sound in the ecological research. Readers will be introduced to the use of the ACIs by a detailed description of the main algorithms recently formulated and on their correct application in the acoustic processing concurring to the creation of sonic information systems. Readers will also find a new dedicated software application, namely SonoScape, that is described in detail with its codes attached in the supplementary material in a completely visible format. The SonoScape is a performing software application operating in MatLab® and is enriched of several options to manage single and large collection of acoustics files. It vides the feasibility to process data at different temporal scale, using different combination of parameters, and to extract novel complexity measures such as entropy and fractal dimension of ecoacoustic events. It also offers functions to visualize the results using customized 3-D plots or ternary plots, intuitively demonstrating the patterns of ACIs based on the vast number of numerical results. Finally, this book provides several examples of case studies with the aim of better understanding the potentiality of ACIs and the power of SonoScape as multitasking software to approaching the complexity of the ecoacoustic investigation. Students and scholars in ecology, land managers and technicians may find an important tool to interpret the complex relationship between humans and natural processes when sounds are adopted as proxy.