Download Free Analysis On Polish Spaces And An Introduction To Optimal Transportation Book in PDF and EPUB Free Download. You can read online Analysis On Polish Spaces And An Introduction To Optimal Transportation and write the review.

Detailed account of analysis on Polish spaces with a straightforward introduction to optimal transportation.
Functional analysis deals with infinite-dimensional spaces. Its results are among the greatest achievements of modern mathematics and it has wide-reaching applications to probability theory, statistics, economics, classical and quantum physics, chemistry, engineering, and pure mathematics. This book deals with measure theory and discrete aspects of functional analysis, including Fourier series, sequence spaces, matrix maps, and summability. Based on the author's extensive teaching experience, the text is accessible to advanced undergraduate and first-year graduate students. It can be used as a basis for a one-term course or for a one-year sequence, and is suitable for self-study for readers with an undergraduate-level understanding of real analysis and linear algebra. More than 750 exercises are included to help the reader test their understanding. Key background material is summarized in the Preliminaries.
Based on the author's university lecture courses, this book presents the many facets of one of the most important open problems in operator algebra theory. Central to this book is the proof of the equivalence of the various forms of the problem, including forms involving C*-algebra tensor products and free groups, ultraproducts of von Neumann algebras, and quantum information theory. The reader is guided through a number of results (some of them previously unpublished) revolving around tensor products of C*-algebras and operator spaces, which are reminiscent of Grothendieck's famous Banach space theory work. The detailed style of the book and the inclusion of background information make it easily accessible for beginning researchers, Ph.D. students, and non-specialists alike.
Provides a comprehensive exploration of the main concepts and techniques from the young, exciting field of approximate groups.
Homological mirror symmetry has its origins in theoretical physics but is now of great interest in mathematics due to the deep connections it reveals between different areas of geometry and algebra. This book offers a self-contained and accessible introduction to the subject via the representation theory of algebras and quivers. It is suitable for graduate students and others without a great deal of background in homological algebra and modern geometry. Each part offers a different perspective on homological mirror symmetry. Part I introduces the A-infinity formalism and offers a glimpse of mirror symmetry using representations of quivers. Part II discusses various A- and B-models in mirror symmetry and their connections through toric and tropical geometry. Part III deals with mirror symmetry for Riemann surfaces. The main mathematical ideas are illustrated by means of simple examples coming mainly from the theory of surfaces, helping the reader connect theory with intuition.
At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.
Noncommutative geometry combines themes from algebra, analysis and geometry and has significant applications to physics. This book focuses on cyclic theory, and is based upon the lecture courses by Daniel G. Quillen at the University of Oxford from 1988–92, which developed his own approach to the subject. The basic definitions, examples and exercises provided here allow non-specialists and students with a background in elementary functional analysis, commutative algebra and differential geometry to get to grips with the subject. Quillen's development of cyclic theory emphasizes analogies between commutative and noncommutative theories, in which he reinterpreted classical results of Hamiltonian mechanics, operator algebras and differential graded algebras into a new formalism. In this book, cyclic theory is developed from motivating examples and background towards general results. Themes covered are relevant to current research, including homomorphisms modulo powers of ideals, traces on noncommutative differential forms, quasi-free algebras and Chern characters on connections.
An up-to-date and self-contained introduction based on a graduate course taught at the University of Paris.
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Stochastic games have an element of chance: the state of the next round is determined probabilistically depending upon players' actions and the current state. Successful players need to balance the need for short-term payoffs while ensuring future opportunities remain high. The various techniques needed to analyze these often highly non-trivial games are a showcase of attractive mathematics, including methods from probability, differential equations, algebra, and combinatorics. This book presents a course on the theory of stochastic games going from the basics through to topics of modern research, focusing on conceptual clarity over complete generality. Each of its chapters introduces a new mathematical tool – including contracting mappings, semi-algebraic sets, infinite orbits, and Ramsey's theorem, among others – before discussing the game-theoretic results they can be used to obtain. The author assumes no more than a basic undergraduate curriculum and illustrates the theory with numerous examples and exercises, with solutions available online.