Download Free Analysis Of United States Army Unmanned Ground Vehicle Strategy Book in PDF and EPUB Free Download. You can read online Analysis Of United States Army Unmanned Ground Vehicle Strategy and write the review.

Unmanned ground vehicles (UGV) are expected to play a key role in the Army's Objective Force structure. These UGVs would be used for weapons platforms, logistics carriers, and reconnaissance, surveillance, and target acquisition among other things. To examine aspects of the Army's UGV program, assess technology readiness, and identify key issues in implementing UGV systems, among other questions, the Deputy Assistant Secretary of the Army for Research and Technology asked the National Research Council (NRC) to conduct a study of UGV technologies. This report discusses UGV operational requirements, current development efforts, and technology integration and roadmaps to the future. Key recommendations are presented addressing technical content, time lines, and milestones for the UGV efforts.
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.
"The U.S. Army has a long record of fielding innovations that not only have enhanced its effectiveness on the battlefield but also sometimes had an impact far beyond warfare. General Editor Jon T. Hoffman has brought together eleven authors who cover the gamut from the invention of the M1 Garand rifle between the world wars through the development of the National Training Center in the 1980s ... This work is neither a historical account of how the Army has adapted over time nor a theoretical look at models that purport to show how innovation is best achieved. Instead, it captures a representative slice of stories of soldiers and Army civilians who have demonstrated repeatedly that determination and a good idea often carry the day in peace and war. Despite the perception of bureaucratic inertia, the institution's long history of benefiting from the inventiveness of its people indicates that it is an incubator of innovation after all"--Publisher's website.
In the early years of robotics and automated vehicles, the fight was against nature and not against a manifestly intelligent opponent. In military environments, however, where prediction and anticipation are complicated by the existence of an intelligent adversary, it is essential to retain human operators in the control loop. Future combat systems will require operators to control and monitor aerial and ground robotic systems and to act as part of larger teams coordinating diverse robotic systems over multiple echelons. The National Research Council organized a workshop to identify the most important human-related research and design issues from both the engineering and human factors perspectives, and develop a list of fruitful research directions. Interfaces for Ground and Air Military Robots summarizes the presentations and discussions from this workshop.
ADP 3-0, Operations, constitutes the Army's view of how to conduct prompt and sustained operations across multiple domains, and it sets the foundation for developing other principles, tactics, techniques, and procedures detailed in subordinate doctrine publications. It articulates the Army's operational doctrine for unified land operations. ADP 3-0 accounts for the uncertainty of operations and recognizes that a military operation is a human undertaking. Additionally, this publication is the foundation for training and Army education system curricula related to unified land operations. The principal audience for ADP 3-0 is all members of the profession of arms. Commanders and staffs of Army headquarters serving as joint task force (JTF) or multinational headquarters should also refer to applicable joint or multinational doctrine concerning the range of military operations and joint or multinational forces. Trainers and educators throughout the Army will use this publication as well.
"To be sure, manned systems could accomplish many if not all of the same goals. But "unmanned systems reduce the risk to our warfighters by providing a sophisticated stand-off capability that supports intelligence, command and control, targeting, and weapons delivery. These systems also improve situational awareness and reduce many of the emotional hazards inherent in air and ground combat, thus decreasing the likelihood of causing civilian noncombatant casualties." "UAVs have gained favor as ways to reduce risk to combat troops, the cost of hardware and the reaction time in a surgical strike" and "to conduct missions in areas that are difficult to access or otherwise considered too high-risk for manned aircraft or personnel on the ground."--Page 3 (author).
How should the U.S. Army develop and integrate automated driving technology for its convoy operations in the next one to five years? The authors examine the technical and tactical benefits and risks of employment concepts for automated trucks.
Winner of the 2019 William E. Colby Award "The book I had been waiting for. I can't recommend it highly enough." —Bill Gates The era of autonomous weapons has arrived. Today around the globe, at least thirty nations have weapons that can search for and destroy enemy targets all on their own. Paul Scharre, a leading expert in next-generation warfare, describes these and other high tech weapons systems—from Israel’s Harpy drone to the American submarine-hunting robot ship Sea Hunter—and examines the legal and ethical issues surrounding their use. “A smart primer to what’s to come in warfare” (Bruce Schneier), Army of None engages military history, global policy, and cutting-edge science to explore the implications of giving weapons the freedom to make life and death decisions. A former soldier himself, Scharre argues that we must embrace technology where it can make war more precise and humane, but when the choice is life or death, there is no replacement for the human heart.
Unmanned aircraft systems (UASs) have become increasingly prevalent in and important to U.S. military operations. Initially serving only as reconnaissance or intelligence platforms, they now carry out such other missions as attacking enemy forces. The swift expansion in their numbers and in the demand for their employment has, however, significantly increased demands on logistics and training systems. The challenge is not simply training system operators but also training operational forces and their commanders to integrate the systems into combat operations. Much of that aspect of training has thus far happened as units employ the systems in actual operations - essentially, on-the-job training. UAS training, particularly for the employment of UASs, now needs to be integrated more formally and cost-effectively into service and joint training programs. This report develops a general concept for training military forces in employment of UASs and a framework for addressing the training requirements and discusses the limits of existing infrastructure in supporting UAS training. Interoperability among services is another issue, because services have thus far mainly developed training suitable for their own needs. But the services have established a set of multiservice tactics, techniques, and procedures for UASs, which should facilitate interoperability training. At present, units are not always ready for joint training, so the focus should be on improving training at the unit level in the employment of UAS capabilities, with the overall guiding principle being to "train as we fight."