Download Free Analysis Of Spherical Symmetries Book in PDF and EPUB Free Download. You can read online Analysis Of Spherical Symmetries and write the review.

This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.
The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications.The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites.
The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications.The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites.
Designed as an introduction to harmonic analysis and group representations, this book examines concepts, ideas, results, and techniques related to symmetry groups and Laplacians. Its exposition is based largely on examples and applications of general theory, covering a wide range of topics rather than delving deeply into any particular area. Author David Gurarie, a Professor of Mathematics at Case Western Reserve University, focuses on discrete or continuous geometrical objects and structures, such as regular graphs, lattices, and symmetric Riemannian manifolds. Starting with the basics of representation theory, Professor Gurarie discusses commutative harmonic analysis, representations of compact and finite groups, Lie groups, and the Heisenberg group and semidirect products. Among numerous applications included are integrable hamiltonian systems, geodesic flows on symmetric spaces, and the spectral theory of the Hydrogen atom (Schrodinger operator with Coulomb potential) explicated by its Runge-Lenz symmetry. Three helpful appendixes include supplemental information, and the text concludes with references, a list of frequently used notations, and an index.
This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.
The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach. The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case. Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.
This book presents, in a consistent and unified overview, results and developments in the field of today ́s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.