Download Free Analysis Of Production And Pressure Data To Characterize The Performance Of Oil And Gas Reservoirs Book in PDF and EPUB Free Download. You can read online Analysis Of Production And Pressure Data To Characterize The Performance Of Oil And Gas Reservoirs and write the review.

"Production data analysis is an important tool for estimating important reservoir parameters. In particular, determining the average reservoir pressure (p[subscript av]) and tracking its change with time is critical to analyzing and optimizing reservoir performance. The traditional method for determining p[subscript av] involves pressure buildup tests. A direct method for estimating (p[subscript av]) from flowing pressures and rate data is available. However, the method is for an idealized case that assumes constant production rate during pseudo steady-state (PSS) flow, which is not generally true for real wells. This research extends that approach so that it can be used to analyze field data with variable rates/variable pressures during boundary-dominated flow (BDF). For gas reservoirs, pseudopressure and pseudotime functions are used to linearize the gas flow equation and enable the liquid diffusivity solution to satisfy gas behavior when analyzing gas test data. This project investigated when the use of pseudo time becomes necessity, and developed a technique to complete the linearization of diffusivity equation without using conventional pseudo time. A further objective of this research included extending our modified approach into a multi-well system. This modified approach is based on a combination of rate-normalized pressure and superposition-time function. The mathematical basis is presented in support of this approach, and the method is validated with synthetic examples and verified with field data. This modified approach is used to estimate average-reservoir pressure, calculate both connected oil volume and reservoir drainage area as a function of time, and provide a reasonable estimation of the reservoir's shape factor. These calculations, allowing the reservoir performance and management to be properly evaluated"--Abstract, page iv.
Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.
Well Production Performance Analysis for Shale Gas Reservoirs, Volume 66 presents tactics and discussions that are urgently needed by the petroleum community regarding unconventional oil and gas resources development and production. The book breaks down the mechanics of shale gas reservoirs and the use of mathematical models to analyze their performance. - Features an in-depth analysis of shale gas horizontal fractured wells and how they differ from their conventional counterparts - Includes detailed information on the testing of fractured horizontal wells before and after fracturing - Offers in-depth analysis of numerical simulation and the importance of this tool for the development of shale gas reservoirs
RESERVOIR CHARACTERIZATION The second volume in the series, “Sustainable Energy Engineering,” written by some of the foremost authorities in the world on reservoir engineering, this groundbreaking new volume presents the most comprehensive and updated new processes, equipment, and practical applications in the field. Long thought of as not being “sustainable,” newly discovered sources of petroleum and newly developed methods for petroleum extraction have made it clear that not only can the petroleum industry march toward sustainability, but it can be made “greener” and more environmentally friendly. Sustainable energy engineering is where the technical, economic, and environmental aspects of energy production intersect and affect each other. This collection of papers covers the strategic and economic implications of methods used to characterize petroleum reservoirs. Born out of the journal by the same name, formerly published by Scrivener Publishing, most of the articles in this volume have been updated, and there are some new additions, as well, to keep the engineer abreast of any updates and new methods in the industry. Truly a snapshot of the state of the art, this groundbreaking volume is a must-have for any petroleum engineer working in the field, environmental engineers, petroleum engineering students, and any other engineer or scientist working with reservoirs. This outstanding new volume: Is a collection of papers on reservoir characterization written by world-renowned engineers and scientists and presents them here, in one volume Contains in-depth coverage of not just the fundamentals of reservoir characterization, but the anomalies and challenges, set in application-based, real-world situations Covers reservoir characterization for the engineer to be able to solve daily problems on the job, whether in the field or in the office Deconstructs myths that are prevalent and deeply rooted in the industry and reconstructs logical solutions Is a valuable resource for the veteran engineer, new hire, or petroleum engineering student
This book deals with complex fluid characterization of oil and gas reservoirs, emphasizing the importance of PVT parameters for practical application in reservoir simulation and management. It covers modeling of PVT parameters, QA/QC of PVT data from lab studies, EOS modeling, PVT simulation and compositional grading and variation. It describes generation of data for reservoir engineering calculations in view of limited and unreliable data and techniques like downhole fluid analysis and photophysics of reservoir fluids. It discusses behavior of unconventional reservoirs, particularly for difficult resources like shale gas, shale oil, coalbed methane, reservoirs, heavy and extra heavy oils.
One of the main duties for reservoir engineers is reservoir study, which starts when a reservoir is explored and it continues until the reservoir abandonment. Reservoir study is a continual process and due to various reasons such as complexity at the surface and limited data, there are many uncertainties in reservoir modelling and characterization causing difficulties in reasonable history-matching and prediction phases of study. Experimental Design in Petroleum Reservoir Studies concentrates on experimental design, a trusted method in reservoir management, to analyze and take the guesswork out of the uncertainties surrounding the underdeveloped reservoir. Case studies from the Barnett shale and fractured reservoirs in the Middle East are just some of the practical examples included. Other relevant discussions on uncertainty in PVT, field performance data, and relevant outcomes of experimental design all help you gain insight into how better data can improve measurement tools, your model, and your reservoir assets. - Apply the practical knowledge and know-how now with real-world case studies included - Gain confidence in deviating uncertain parameters surrounding the underdeveloped reservoir with a focus on application of experimental design - Alleviate some of the guesswork in history-matching and prediction phrases with explanations on uncertainty analysis
Applied Techniques to Integrated Oil and Gas Reservoir Characterization: A Problem-Solution Discussion with Experts presents challenging questions encountered by geoscientists in their day-to-day work in the exploration and development of oil and gas fields and provides potential solutions from experts working in the field. Covers Amplitude Versus Offset (AVO), well-to-seismic tie, phase of seismic data, seismic inversion studies, pore pressure prediction, rock physics and exploration geological. The text examines challenges in the industry as well as the solutions and techniques used to overcome those challenges. Over the past several years there has been a growing integration of geophysical, geological, and reservoir engineering, production and petrophysical data to predict and determine reservoir properties. This includes reservoir extent and sand development away from the well bore, as well as in unpenetrated prospects, leading to optimization planning for field development. As such, geoscientists now must learn the technology, processes and challenges involved within their specific functions in order to complete day-to-day activities. Presents a thorough understanding of the requirements and issues of various disciplines in characterizing a wide spectrum of reservoirs Includes real-life problems and challenging questions encountered by geoscientists in their day-to-day work, along with answers from experts working in the field Provides an integrated approach among different disciplines (geology, geophysics, petrophysics, and petroleum engineering)
This book wxplains the fundamentals of reservoir engineering and their practical application in conducting a comprehensive field study.Two new chapters have been included in this second edition: chapter 14 and 15.