Download Free Analysis Of Multiphase Fluid Flows Via High Speed And Synthetic Aperture Three Dimensional Imaging Book in PDF and EPUB Free Download. You can read online Analysis Of Multiphase Fluid Flows Via High Speed And Synthetic Aperture Three Dimensional Imaging and write the review.

Spray flows are a difficult problem within the realm of fluid mechanics because of the complicated interfacial physics involved. Complete models of sprays having even the simplest geometries continue to elude researchers and practitioners. From an experimental viewpoint, measurement of dynamic spray characteristics is made difficult by the optically dense nature of many sprays. Flow features like ligaments and droplets break off the bulk liquid volume during the atomization process and often occlude each other in images of sprays. In this thesis, two important types of sprays are analyzed. The first is a round liquid jet in a cross flow of air, which applies, for instance, to fuel injection in jet engines and the aerial spraying of crops. This flow is studied using traditional high-speed imaging in what is known as the bag breakup regime, in which partial bubbles that look like bags are formed along the downstream side of the liquid jet due to the aerodynamic drag exerted on it by the cross flow. Here, a new instability is discovered experimentally involving the presence of multiple bags at the same streamwise position along the jet. The dynamics of bag expansion and upstream column wavelengths are also investigated experimentally and theoretically, with experimental data having found to generally follow the scaling arguments predicted by the theory. The second flow that is studied is the atomization of an unsteady turbulent sheet of water in air, a situation encountered in the formation and breakup of ship bow waves. To better understand these complicated flows, the emerging light field imaging (LFI) and synthetic aperture (SA) refocusing techniques are combined to achieve three-dimensional (3D) reconstruction of the unsteady spray flow fields. A multi-camera array is used to capture the light field and raw images are reparameterized to digitally refocus the flow field post-capture into a volumetric image. These methods allow the camera array to effectively "see through" partial occlusions in the scene. It is demonstrated here that flow features, such as individual droplets and ligaments, can be located in 3D by refocusing throughout the volume and extracting features on each plane.
Experimental spray flow analysis is a difficult fluid dynamics problem because of the high optical density of many sprays. Flow features such as ligaments and droplets break off the bulk liquid volume during the atomization process and often occlude each other in images of sprays. Therefore, accurate feature detection and measurement requires advanced three-dimensional (3D) imaging techniques. In this thesis, 3D computational photographic methods including light field imaging (LFI) and synthetic aperture (SA) refocusing are combined and extended to resolve multiphase flows in 3D over time. Multiple photographs of the same scene are recorded with a large depth of field by each of the cameras in an array. After calibrating the cameras, images from each of the cameras are transformed and combined at each desired depth to construct a 3D focal stack of the scene. Each depth slice image has a narrow depth of field. Features that are physically located at a particular depth appear in focus, while objects located at other depths appear blurred. The SA output focal stack images can be filtered to physically locate features that are small relative to the field of view. However, this task becomes more difficult for relatively larger features due to the presence of bigger out-of-focus blur artifacts. In this thesis, a Synthetic Aperture Feature Extraction (SAFE) technique has been developed to measure blobs in 3D. First, raw images from each of the array cameras are preprocessed. Blobs are detected and converted to white pixels, while the rest of the image is made black. These binary images are then refocused using a multiplicative refocusing method that only preserves the detected blobs in the neighborhood of their physical 3D location. For blobs that can be approximated as spheres, 3D centroids and radii can then be reliably extracted after post-processing the focal image stack. This process can be repeated over time while tracking particle motion. As a result, 3D spatial, size, and velocity data distributions can be calculated as functions of time to better understand the flow dynamics and characteristics. The SAFE technique has been verified using simulations and experiments involving flow of spherical soap bubbles in air. This 3D SAFE method is also applied to the emission of mucosalivary fluid from the mouth during sneezing. Sneezes feature turbulent, multiphase flows containing potentially pathogen-bearing droplets that can play a key role in the spread of numerous infectious diseases, including influenza, SARS, and, possibly, Ebola. The range of contamination of the droplets is largely determined by their size. Despite recent efforts, no consensus on the drop size distribution from violent expirations can be found in the literature. This uncertainty inhibits a mechanistic understanding of disease transmission. Here, high-speed imaging is used to visualize previously unreported dynamics of fluid fragmentation in detail at the exit of the mouth. Droplet radii, positions, velocities, and other measurements are calculated using blob detection and tracking. This is done in two dimensions by recording the scene with a high-speed side and top camera. 3D experiments are then performed using an array of nine cameras and implementing the aforementioned 3D SAFE imaging method. The 3D sneeze data are important for a more complete understanding of the range and contamination potential of airborne disease transmission.
Fluid mechanics and instrumentation have a long history together, as experimental fluids studies play an important role in describing a more complete physical picture in a variety of problems. Presently. state-of-the-art instruments for fluid flows aim to resolve various quantities in three-dimensions. This thesis describes a novel three dimensional imaging system intended to extend laboratory measurement capabilities in complicated flows where knowledge is incomplete. In particular, the imaging system is designed to perform three-dimensional velocimetry in densely seeded flows where object geometry may partially occlude the field as well as to measure and locate bubbles, droplets and particles in three-dimensions in multiphase flows. An instrument of this kind has ramifications in a variety of engineering applications from air-sea interaction to Naval hydrodynamics to turbulence and beyond. The imaging system is based upon synthetic aperture (SA) imaging, which has received much attention in the computer vision community recently. In focus images from an array of synchronized cameras are recombined in software post-capture using a refocusing algorithm to generate a focal stack of synthetic images. Each synthetic image has a narrow depth of field, and objects residing at this depth appear sharp while off-plane objects appear blurred. The refocusing algorithm not only allows for 3D reconstruction of a scene, but also enables "see-through" effects, whereby an object occluded in some of the camera views will be seen in the synthetic images. In this thesis, considerations for development of a three-dimensional measurement system for fluid flows based on the SA imaging field are made. A high-performance three-dimensional particle image velocimetry technique is described and validated. Also, a method for auto-calibration of mutli-camera setups for fluids experiments is derived and developed. Finally, algorithms are generated for application to multiphase flows and the technique is applied to a circular plunging jet with results showing excellent agreement to prior literature and yielding new insight into the problem.
We present a new method for resolving three-dimensional (3D) fluid velocity fields using a technique called synthetic aperture particle image velocimetry (SAPIV). By fusing methods from the imaging community pertaining to light field imaging with concepts that drive experimental fluid mechanics, SAPIV overcomes many of the inherent challenges of 3D particle image velocimetry (3D PIV). This method offers the ability to digitally refocus a 3D flow field at arbitrary focal planes throughout a volume. The viewable out-of-plane dimension (Z) can be on the same order as the viewable in-plane dimentions (X-Y), and these dimensions can be scaled from tens to hundreds of millimeters. Furthermore, the digital refocusing provides the ability to 'see-through' partial occlusions, enabling measurements in densely seeded volumes. The advantages are achieved using a camera array (typically at least five cameras) to image the seeded fluid volume. The theoretical limits on refocused plane spacing and viewable depth are derived and explored as a function of camera optics and spacing of the array. A geometric optics model and simulated PIV images are used to investigate system performance for various camera layouts, measurement volume sizes and seeding density; performance is quantified by the ability to reconstruct the 3D intensity field, and resolve 3D vector fields in densely seeded simulated flows. SAPIV shows the ability to reconstruct fields with high seeding density and large volume size. Finally, results from an experimental implemnetation of SAPIV using a low cost eight-camer aarray to study a vortex ring in a 65 x 40 x32 mm3 volume are presented. The 3D PIV results are compared with 2D PIV data to demonstrate the capability of the 3D SAPIV technique.
Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.
The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow. The included papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering.
Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS–Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. Builds a complete understanding of the theory behind the application of population balance models and an appreciation of the scale-up of computational fluid dynamics (CFD) and population balance modeling (PBM) to a variety of engineering and industry applications in chemical, pharmaceutical, energy and petrochemical sectors The tools in this book provide the opportunity to incorporate more accurate models in the design of chemical and particulate based multiphase processes Enables readers to translate theory to practical use with CFD software
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended.” BERND PLATZER, ZAAM In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended.” BERND PLATZER, ZAAM
Der Sammelband enthält Beiträge einer Tagung über die Simulation von dreidimensionalen Flüssigkeiten. Sie geben einen Überblick über den Stand des Wissens auf dem Gebiet der numerischen Simulation der Turbulenz, angewandt auf eine weite Spanne von Problemen wie Aerodynamik, Nicht-Newtonsche Flüssigkeiten, Konvektion.This volume contains the material presented at the IMACS-COST Conference on CFD, Three-Dimensional Complex Flows, held in Lausanne (Switzerland), September 13 - 15, 1995. It gives an overview of the current state of numerical simulation and turbulence modelling applied to a wide range of fluid flow problems such as an example aerodynamics, non-Newtonian flows, transition, thermal convection.