Download Free Analysis Of Fission Product Release Behavior During The Tmi 2 Accident Book in PDF and EPUB Free Download. You can read online Analysis Of Fission Product Release Behavior During The Tmi 2 Accident and write the review.

An analysis of fission product release during the Three Mile Island Unit 2 (TMI-2) accident has been initiated to provide an understanding of fission product behavior that is consistent with both the best estimate accident scenario and fission product results from the ongoing sample acquisition and examination efforts. ''First principles'' fission product release models are used to describe release from intact, disrupted, and molten fuel. Conclusions relating to fission product release, transport, and chemical form are drawn. 35 refs., 12 figs., 7 tabs.
In response to the accident at Three Mile Island Unit 2 (TMI-2), the United States Nuclear Regulatory Commission (USNRC) initiated a series of Severe Fuel Damage tests that were performed in the Power Burst Facility at the Idaho National Engineering Laboratory to obtain data necessary to understand (a) fission product release, transport, and deposition; (b) hydrogen generation; and (c) fuel/cladding material behavior during degraded core accidents. Data are presented about fission product behavior noted during the second experiment of this series, the Severe Fuel Damage Test 1-1, with an in-depth analysis of the fission product release, transport, and deposition phenomena that were observed. Real-time release and transport data of certain fission products were obtained from on-line gamma spectroscopy measurements. Liquid and gas effluent grab samples were collected at selected periods during the test transient. Additional information was obtained from steamline deposition analysis. From these and other data, fission product release rates and total release fractions are estimated and compared with predicted release behavior using current models. Fission product distributions and a mass balance are also summarized, and certain probable chemical forms are predicted for iodine, cesium, and tellurium. An in-depth evaluation of phenomena affecting the behavior of the high-volatility fission products - xenon, krypton, iodine, cesium, and tellurium - is presented. Analysis indicates that volatile release from fuel is strongly influenced by parameters other than fuel temperature. Fission product behavior during transport through the Power Burst Facility effluent line to the fission product monitoring system is assessed. Tellurium release behavior is also examined relatve to the extent of Zircaloy cladding oxidation. 81 fig., 53 tabs.
The Three Mile Island and Chernobyl nuclear incidents emphasized the need for the world-wide nuclear community to cooperate further and exchange the results of research in this field in the most open and effective manner. Recognizing the roles of heat and mass transfer in all aspects of fission-product behavior in sever reactor accidents, the Executive Committee of the International Centre for Heat and Mass Transfer organized a Seminar on Fission Product Transport Processes in Reactor Accidents. This book contains the eleven of the lectures and all the papers presented at the seminar along with four invited papers that were not presented and a summary of the closing session.
The accident at the Three Mile Island Unit 2 (TMI-2) reactor, now 10 years old, remains as the United States' worst commercial nuclear reactor accident. Although the consequences of the accident were restricted primarily to the plant itself, the potential consequences of the accident, should it have progressed further, are large enough to warrant close scrutiny of all aspects of the event. TMI-2 accident research is being conducted by the US Department of Energy (DOE) to provide the basis for more accurate calculations of source terms for postulated severe accidents. Research objectives supporting this goal include developing a comprehensive and consistent understanding of the mechanisms that controlled the progression of core damage and subsequent fission product behavior during the TMI-2 accident, and applying that understanding to the resolution of important severe accident safety issues. Developing a best-estimate scenario of the core melt progression during the accident is the focal point of the research and involves analytical work to interpret and integrate: (1) data recorded during the accident from plant instrumentation, (2) the post-accident state of the core, (3) results of the examination of material from the damaged core, and (4) related severe-accident research results. This paper summarizes the TMI-2 Accident Evaluation Program that is being conducted for the USDOE and briefly describes the important results that have been achieved. The Program is divided into four parts: Sample Acquisition and Plant Examination, Accident Scenario, Standard Problem Exercise, and Information and Industry Coordination.
The Three Mile Island and Chernobyl nuclear incidents emphasized the need for the world-wide nuclear community to cooperate further and exchange the results of research in this field in the most open and effective manner. Recognizing the roles of heat and mass transfer in all aspects of fission-product behavior in sever reactor accidents, the Executive Committee of the International Centre for Heat and Mass Transfer organized a Seminar on Fission Product Transport Processes in Reactor Accidents. This book contains the eleven of the lectures and all the papers presented at the seminar along with four invited papers that were not presented and a summary of the closing session.
La 4e de couverture indique : Organizes and presents all the latest thought on LWR nuclear safety in one consolidated volume, provided by the top experts in the field, ensuring high-quality, credible and easily accessible information.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This report presents the status of the TMI-2 fission product inventory program through May 1985. The fission product inventory program is an assessment of the location of fission products distributed in the plant as a result of the TMI-2 accident. Included in this report are principal results of samples from the reactor building where most of the mobile fission products (i.e., radiocesium and iodine) are expected to be found. The data are now complete enough for most reactor components; therefore, it is possible to direct the balance of the examination and sampling program to areas and components where it is likely to be most productive. Those areas are the reactor core and the reactor building basement, with emphasis on the currently unsampled portions of the core.
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.