Download Free Analysis Of Environmental Radionuclides Book in PDF and EPUB Free Download. You can read online Analysis Of Environmental Radionuclides and write the review.

The purpose of this book is to present a state of art summary of current knowledge of methods of assessment of radionuclides in the terrestrial and marine environments. It cover the traditional methods of radioactivity measurements such as radiometrics techniques, but also recent developments in the mass spectrometry sector. The book starts with a short preface introducing the subject of the book, summarising content and philosophy of the book, as well as the most important historical achievements. The scientific topics are introduced by description of sampling methods, optimisation of sampling sites and sampling frequency. The recent developments in radiochemical separation methods using chromatography resins for the treatment of actinides, transuranics and other groups of radioelements are also described. No other book is available covering all aspects of environmental radioactivity measurements, although remarkable progress has been made in detection techniques over the last ten years. At present the new methods enable to carry out investigations which were not possible before, either because of lack of sensitivity or because of the fact that they required too large samples.
Environmental Radionuclides presents a state-of-the-art summary of knowledge on the use of radionuclides to study processes and systems in the continental part of the Earth's environment. It is conceived as a companion to the two volumes of this series, which deal with isotopes as tracers in the marine environment (Livingston, Marine Radioactivity) and with the radioecology of natural and man-made terrestrial systems (Shaw, Radioactivity in Terrestrial Ecosystems). Although the book focuses on natural and anthropogenic radionuclides (radioactive isotopes), it also refers to stable environmental isotopes, which in a variety of applications, especially in hydrology and climatology, have to be consulted to evaluate radionuclide measurements in terms of the ages of groundwater and climate archives, respectively. The basic principles underlying the various applications of natural and anthropogenic radionuclides in environmental studies are described in the first part of the book. The book covers the two major groups of applications: the use of radionuclides as tracers for studying transport and mixing processes: and as time markers to address problems of the dynamics of such systems, manifested commonly as the so-called residence time in these systems. The applications range from atmospheric pollution studies, via water resource assessments to contributions to global climate change investigation. The third part of the book addresses new challenges in the development of new methodological approaches, including analytical methods and fields of applications. - A state-of-the-art summary of knowledge on the use of radionuclides - Conceived as a companion to the two volumes of this series, which deal with isotopes as tracers
Handbook of Radioactivity Analysis is written by experts in the measurement of radioactivity. The book describes the broad scope of analytical methods available and instructs the reader on how to select the proper technique. It is intended as a practical manual for research which requires the accurate measurement of radioactivity at all levels, from the low levels encountered in the environment to the high levels measured in radioisotope research. This book contains sample preparation procedures, recommendations on steps to follow, necessary calculations, computer controlled analysis, and high sample throughput techniques. Each chapter includes practical techniques for application to nuclear safety, nuclear safeguards, environmental analysis, weapons disarmament, and assays required for research in biomedicine and agriculture. The fundamentals of radioactivity properties, radionuclide decay, and methods of detection are included to provide the basis for a thorough understanding of the analytical procedures described in the book. Therefore, the Handbook can also be used as a teaching text. - Includes sample preparation techniques for matrices such as soil, air, plant, water, animal tissue, and surface swipes - Provides procedures and guidelines for the analysis of commonly encountered na
Handbook of Radioactivity Analysis: Radiation Physics and Detectors, Volume One, and Radioanalytical Applications, Volume Two, Fourth Edition, constitute an authoritative reference on the principles, practical techniques and procedures for the accurate measurement of radioactivity - everything from the very low levels encountered in the environment, to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, and fuel cycle facilities, and in the implementation of nuclear forensic analysis and nuclear safeguards. It includes sample preparation techniques for all types of matrices found in the environment, including soil, water, air, plant matter and animal tissue, and surface swipes.Users will find the latest advances in the applications of radioactivity analysis across various fields, including environmental monitoring, radiochemical standardization, high-resolution beta imaging, automated radiochemical separation, nuclear forensics, and more. - Spans two volumes, Radiation Physics and Detectors and Radioanalytical Applications - Includes a new chapter on the analysis of environmental radionuclides - Provides the latest advances in the applications of liquid and solid scintillation analysis, alpha- and gamma spectrometry, mass spectrometric analysis, Cherenkov counting, flow-cell radionuclide analysis, radionuclide standardization, aerosol analysis, high-resolution beta imaging techniques, analytical techniques in nuclear forensics, and nuclear safeguards - Describes the timesaving techniques of computer-controlled automatic separation and activity analysis of radionuclides - Provides an extensive table of the radiation characteristics of most radionuclides of interest for the radioanalytical chemist
The 3-volume set highlights the behavior of radionuclides in the environment and focusing on the development of related fields of study, including microbiology and nanoscience. In this context, it discusses the behavior of radionuclides released in areas of Lake Karachai in Ural, and those released as a result of Chernobyl accident (1986), and in Fukushima (2011). Volume I presents the experiences gained in South Urals (“Mayak” plant, Lake Karachai), providing a scientific basis for more precise understanding of the behavior of radionuclides in complex subsurface environments. On the basis of monitoring data, it examines the pathways of radionuclide migration and the influence of the geological environment and groundwater on the migration, with a particular focus on particles from the nanoscale to microscale. It also discusses the function of microbes and microscale particles, from their direct interaction with radionuclides to their ecological role in changing the physic-chemical condition of a given environment. Lastly, the protective properties of geological media are also characterized, and mathematical modeling of contaminant migration in the area of Lake Karachai is used to provide information regarding the migration of radionuclides.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
Anthropogenic radionuclides have been introduced into the environment by incidents such as nuclear weapon tests, accidents in nuclear power plants, transport accidents and accidental or authorised discharges from nuclear facilities. Scientists need accurate analysis of these radionuclides in order to estimate the risk to the public from released radioactivity. This book is a snapshot of the work of leading scientists from across the globe on environmental radiochemistry and radioecology, nuclear forensics and radiation detection, radioanalytical techniques and nuclear industry applications. The research contributions were first presented at the 13th International Symposium on Nuclear and Environmental Radiochemical Analysis in September 2018. This essential work provides a key reference for graduates and professionals who work across fields involving analytical chemistry, radiochemistry, environmental science and technology, and waste disposal.
This book, the third in the series Behavior of Radionuclides in the Environment, is dedicated to Fukushima. Major findings from research since 2011 are reviewed concerning the behavior of radionuclides released into the environment due to the Fukushima Dai-ichi Nuclear Power Plant accident, including atmospheric transport and fallout of radionuclides, their fate, and transport in the soil-water environment, behavior in freshwater, coastal and marine environment, transfer in the terrestrial and agricultural environment. Volume III discusses not only radionuclides dynamics in the environment in the short- and mid-term, but also modeling and prediction of long-term time changes. Along with reviews, the book contains original data and results not published previously. It was spearheaded by the authors from the Institute of Environmental Radioactivity at Fukushima University, established two years after the Fukushima accident, with their collaborators from Japan, Russia, and Ukraine. The knowledge emerging from the studies of the environmental behavior of Fukushima-derived radionuclides enables us to move forward in understanding mechanisms of environmental contamination and leads to better modeling and prediction of long-term pollution effects in general.
Radioactive particles have been released to the environment from a number of sources, including nuclear weapon tests, nuclear accidents and discharges from nuclear installations. Particle characteristics influence the mobility, biological uptake and effects of radionuclides, hence information on these characteristics is essential for assessing environmental impact and risks. This publication presents a series of papers covering sources and source term characterisation, methodologies for characterizing particles, and the impact of particles on the behaviour of radioactive particles in the environment. Sources covered include the Chernobyl accident, nuclear weapons accidents at Thule and Palomares accident, the discharges from Dounreay and Krashnoyarsk, and depleted uranium in Kosovo and Kuwait. The overall aim is that an increased understanding of particle characteristics and behavior will help to reduce some of the uncertainties in environmental impact and risk assessment for particle contaminated areas.
Incidents in the past have made scientists aware of the need for accurate methods of radionuclide analyses in order to estimate the risk to the public from released radioactivity .This book is an authoritative, up-to-date collection of research contributions presented at the 11th International Symposium on Environmental Radiochemical Analysis. Representing the work of leading scientists from across the globe it presents information on analytical radiochemistry, the behaviour of radionuclides in the environment, radioactively contaminated land, fate of radionuclides in natural and engineered environments and behaviour of radionuclides in radioactive wastes. This essential work will be a key reference for graduates and professionals who work across fields involving analytical chemistry, environmental science and technology, and hazards and waste research and disposal.