Download Free Analysis Of Building Thermal Envelope Book in PDF and EPUB Free Download. You can read online Analysis Of Building Thermal Envelope and write the review.

This book results from a Special Issue published in Energies, entitled “Building Thermal Envelope". Its intent is to identify emerging research areas within the field of building thermal envelope solutions and contribute to the increased use of more energy-efficient solutions in new and refurbished buildings. Its contents are organized in the following sections: Building envelope materials and systems envisaging indoor comfort and energy efficiency; Building thermal and energy modelling and simulation; Lab test procedures and methods of field measurement to assess the performance of materials and building solutions; Smart materials and renewable energy in building envelope; Adaptive and intelligent building envelope; and Integrated building envelope technologies for high performance buildings and cities.
This book is about the optimization of the characterization of the thermal properties of building envelopes, through experimental tests and the use of artificial intelligence. It analyses periodic and stationary thermal properties using measurement approaches based on the heat flow meter method and the thermometric method. These measurements are then analysed using advanced artificial intelligence algorithms. The book is structured in four parts, beginning with a discussion of the importance of thermal properties in the energy performance of buildings. Secondly, theoretical and experimental methods for characterizing thermal properties are analysed. Then, the methodology is developed, and the characteristics and properties of the algorithms used are explored. Finally, the results obtained with the algorithms are analysed and the most appropriate approaches are determined. This book is of interest to researchers, civil and industrial engineers, energy auditors and architects, by providing a resource which improves energy audit tasks in existing buildings.
PCM Enhanced Building Envelopes presents the latest research in the field of thermal energy storage technologies that can be applied to solar heating and cooling with the aim of shifting and reducing building energy demand. It discusses both practical and technical issues, as well as the advantages of using common phase change materials (PCMs) in buildings as a more efficient, novel solution for passive solar heating/cooling strategies. The book includes qualitative and quantitative descriptions of the science, technology and practices of PCM-based building envelopes, and reflects recent trends by placing emphasis on energy storage solutions within building walls, floors, ceilings, façades, windows, and shading devices. With the aim of assessing buildings’ energy performance, the book provides advanced modeling and simulation tools as a theoretical basis for the analysis of PCM-based building envelopes in terms of heat storage and transfer. This book will be of interest to all those dealing with building energy analysis such as researchers, academics, students and professionals in the fields of mechanical and civil engineering and architectural design
This book results from a Special Issue published in Energies, entitled “Building Thermal Envelope"". Its intent is to identify emerging research areas within the field of building thermal envelope solutions and contribute to the increased use of more energy-efficient solutions in new and refurbished buildings. Its contents are organized in the following sections: Building envelope materials and systems envisaging indoor comfort and energy efficiency; Building thermal and energy modelling and simulation; Lab test procedures and methods of field measurement to assess the performance of materials and building solutions; Smart materials and renewable energy in building envelope; Adaptive and intelligent building envelope; and Integrated building envelope technologies for high performance buildings and cities.
The design and construction of the appropriate building envelope is one of the most effective ways for improving a building’s thermal performance. Thermal Inertia in Energy Efficient Building Envelopes provides the optimal solutions, tools and methods for designing the energy efficient envelopes that will reduce energy consumption and achieve thermal comfort and low environmental impact. Thermal Inertia in Energy Efficient Building Envelopes provides experimental data, technical solutions and methods for quantifying energy consumption and comfort levels, also considering dynamic strategies such as thermal inertia and natural ventilation. Several type of envelopes and their optimal solutions are covered, including retrofit of existing envelopes, new solutions, passive systems such as ventilated facades and solar walls. The discussion also considers various climates (mild or extreme) and seasons, building typology, mode of use of the internal environment, heating profiles and cross-ventilation Experimental investigations on real case studies, to explore in detail the behaviour of different envelopes Laboratory tests on existing insulation to quantify the actual performances Analytical simulations in dynamic conditions to extend the boundary conditions to other climates and usage profiles and to consider alternative insulation strategies Evaluation of solutions sustainability through the quantification of environmental and economic impacts with LCA analysis; including global cost comparison between the different scenarios Integrated evaluations between various aspects such as comfort, energy saving, and sustainability
Office building envelopes are generally successful in meeting a range of structural, aesthetic and thermal requirements. However, poor thermal envelope performance will occur when there are discontinuities in the envelope insulation and air barrier systems, such as thermal bridges and air leakage sites. These discontinuities result from designs that do not adequately account for heat, air and moisture transmission, with many thermal defects being associated with inappropriate or inadequate detailing of the connections of envelope components. Despite the existence of these thermal envelope performance problems, information is available to design and construct envelopes that do perform well. In order to close the gap between available knowledge and current practice, the Public Buildings Service of the General Services Administration has entered into an interagency agreement with the Center for Building Technology of the National Institute of Standards and Technology to develop thermal envelope design guidelines for federal office buildings. The goal of this project is to transfer the knowledge on thermal envelope design and performance from the building research, design and construction communities into a form that will be used by building design professionals. This report describes the NIST/GSA envelope design guidelines development at the end of the first year of effort on the project. The effort to this point has consisted of a literature review of research results and technical information on thermal envelope performance and design, an assessment of existing design guidelines as they relate to the thermal envelope, and the development of a format and outline for the design guidelines.
Presenting an overview of the use of Phase Change Materials (PCMs) within buildings, this book discusses the performance of PCM-enhanced building envelopes. It reviews the most common PCMs suitable for building applications, and discusses PCM encapsulation and packaging methods. In addition to this, it examines a range of PCM-enhanced building products in the process of development as well as examples of whole-building-scale field demonstrations. Further chapters discuss experimental and theoretical analyses (including available software) to determine dynamic thermal and energy performance characteristics of building enclosure components containing PCMs, and present different laboratory and field testing methods. Finally, a wide range of PCM building products are presented which are commercially available worldwide. This book is intended for students and researchers of mechanical, architectural and civil engineering and postgraduate students of energy analysis, dynamic design of building structures, and dynamic testing procedures. It also provides a useful resource for professionals involved in architectural and mechanical-civil engineering design, thermal testing and PCM manufacturing.