Download Free Analysis In Banach Spaces Book in PDF and EPUB Free Download. You can read online Analysis In Banach Spaces and write the review.

This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory. It presents a thorough study of the fundamental randomisation techniques and the operator-theoretic aspects of the theory. The first two chapters address the relevant classical background from the theory of Banach spaces, including notions like type, cotype, K-convexity and contraction principles. In turn, the next two chapters provide a detailed treatment of the theory of R-boundedness and Banach space valued square functions developed over the last 20 years. In the last chapter, this content is applied to develop the holomorphic functional calculus of sectorial and bi-sectorial operators in Banach spaces. Given its breadth of coverage, this book will be an invaluable reference to graduate students and researchers interested in functional analysis, harmonic analysis, spectral theory, stochastic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
This book is about the subject of higher smoothness in separable real Banach spaces. It brings together several angles of view on polynomials, both in finite and infinite setting. Also a rather thorough and systematic view of the more recent results, and the authors work is given. The book revolves around two main broad questions: What is the best smoothness of a given Banach space, and its structural consequences? How large is a supply of smooth functions in the sense of approximating continuous functions in the uniform topology, i.e. how does the Stone-Weierstrass theorem generalize into infinite dimension where measure and compactness are not available? The subject of infinite dimensional real higher smoothness is treated here for the first time in full detail, therefore this book may also serve as a reference book.
A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasionally using the more general topological vector space and locally convex space setting, it emphasizes the development of the reader's mathematical maturity and the ability to both understand and "do" mathematics. In so doing, Functional Analysis provides a strong springboard for further exploration on the wide range of topics the book presents, including: * Weak topologies and applications * Operators on Banach spaces * Bases in Banach spaces * Sequences, series, and geometry in Banach spaces Stressing the general techniques underlying the proofs, Functional Analysis also features many exercises for immediate clarification of points under discussion. This thoughtful, well-organized synthesis of the work of those mathematicians who created the discipline of functional analysis as we know it today also provides a rich source of research topics and reference material.
This book is intended to be used with graduate courses in Banach space theory.
In recent years there has been a surge of profound new developments in various aspects of analysis whose connecting thread is the use of Banach space methods. Indeed, many problems seemingly far from the classical geometry of Banach spaces have been solved using Banach space techniques. This volume contains papers by participants of the conference "Banach Spaces and their Applications in Analysis", held in May 2006 at Miami University in Oxford, Ohio, in honor of Nigel Kalton's 60th birthday. In addition to research articles contributed by participants, the volume includes invited expository articles by principal speakers of the conference, who are leaders in their areas. These articles present overviews of new developments in each of the conference's main areas of emphasis, namely nonlinear theory, isomorphic theory of Banach spaces including connections with combinatorics and set theory, algebraic and homological methods in Banach spaces, approximation theory and algorithms in Banach spaces. This volume also contains an expository article about the deep and broad mathematical work of Nigel Kalton, written by his long time collaborator, Gilles Godefroy. Godefroy's article, and in fact the entire volume, illustrates the power and versatility of applications of Banach space methods and underlying connections between seemingly distant areas of analysis.
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices w
An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.