Download Free Analysis And Mapping Of Soil Salinity Book in PDF and EPUB Free Download. You can read online Analysis And Mapping Of Soil Salinity and write the review.

This study deals with the analysis and mapping of soil salinity levels in Metehara sugarcane estate irrigation farm. An attempt was made to identify salt affected areas by visual interpretation using both true and false colour composite. From the supervised classification, 726 ha area was mapped as highly saline. However, the result obtained from NDSI was not only in area-wise, but also the level of salinity as highly saline, moderately and slightly saline, determined based on the reflectance value. Out of the total area, 6% was mapped as highly saline. A regression analysis between EC values of small areas confined only in Metehara Sugarcane estate and the corresponding reflectance value in the NDSI image offer a polynomial relation of order two. The empirical model that obtained from the regression analysis was used to derive a salinity map and estimate EC level. The spatial distribution of salt affected area derived from NDSI and model were of similar pattern but of different extent. In overlay salinity model, four classes have been identified with varying degree of salinity.
The papers assembled here cover topics such as technological advances in soil salinity mapping and monitoring, management and reclamation of salt-affected soils, use of marginal quality water for crop production, salt-tolerance mechanisms in plants, biosaline agriculture and agroforestry, microbiological interventions for marginal soils, opportunities and challenges in using marginal waters, and soil and water management in irrigated agriculture.
Recognized and advocated as a powerful tool, the role of remote sensing in identifying, mapping, and monitoring soil salinity and salinization will continue to expand. Remote Sensing of Soil Salinization: Impact on Land Management delineates how to combine science and geospatial technologies for smart environmental management. Choose the Right Tech
This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.
This volume covers such areas in the field of soil salinity and water quality as: origin and distribution of salt-affected soils; management of alkali soils; quality criteria of irrigation water; wastewaters as a source of irrigation; and grasses and trees in the management of salt-affected soils.
Determination of soil salinity from aqueous electrical conductivity; determination of soil salinity from soil-paste and bulk soil electrical conductivity; example uses of salinity assessment technology; operational and equipment costs associated with salinity instrumentation measurement techniques.
Salt-affected soils such as saline or sodic soils are distributed in all continents at various levels of problem intensity. They are soils with high amounts of soluble salts and/or sodium ions. An updated information of their distribution and drivers is a first step towards their sustainable management. This book provides technical guidelines and approach for developing a harmonized multiscale soil information of salt-affected soils. The book is organized into three sections covering seven chapters. The sections are sequentially arranged but independently designed to benefit focused readership who may want to go straight to any section. Section 1 gives the background information. It has three chapters covering existing literature on the characteristics and mapping methods for salt problems in the soil. It is intended to illustrate the basic concepts, linkage of the characteristics of salt-affected soils with input data requirements for their mapping, existing classification methods, and global distribution of these soils. Section 2 covers the methodological procedures for developing multiscale spatial information of salt-affected soils. It has two chapters describing requirements, input data preparation, and the procedural steps for developing spatial information of salt-affected soils. It outlines how data from different sources and characteristics are harmonized and integrated to produce information of salt-affected soils. Section 3 covers information sharing and resources mobilization when developing information on salt-affected soils. It gives the guidelines for preparing spatial maps and steps for value-addition to benefit end-users of the information. It also contains a generic training program for building technical capacity for mapping salt-affected
Remote Sensing of Soils: Mapping, Monitoring and Measurement covers the basic, theoretical and scientific concepts of multidisciplinary subjects, including sections that relate to soil sciences, remote sensing, geoinformatics, geomatics, civil and water resource engineering, geography, agriculture, disaster management and the earth and environmental sciences. The book consists of defined elements to help guide the reader, including an abstract, introductions, a literature review, methodology, results and discussions, findings, recommendations and conclusions. Each chapter includes theoretical information that is illustrated with flow charts, tables, figures, diagrams and other related illustrations. Site-specific research and case studies are described throughout with geographical and demographical data, current scientific issues, impacts, solutions and societal benefits, thus providing readers from multi-disciplinary backgrounds the tools they need to successful map, analyze and monitor soils. Covers multispectral, hyperspectral and SAR remote sensing analysis of soil properties, soil moisture, soil salinity, and soil organic matters, etc., in spatio-temporal scale Includes a section on digital soil mapping, including integrated RS, GIS and insitu surveyed data analysis for digital soil mapping using widely accepted models and approaches Ideal for readers in the soil sciences, remote sensing, geoinformatics, geomatics, civil and water resource engineering, geography, agriculture, disaster management, and earth and environmental sciences
Conventional soil maps represent a valuable source of information about soil characteristics, however they are subjective, very expensive, and time-consuming to prepare. Also, they do not include explicit information about the conceptual mental model used in developing them nor information about their accuracy, in addition to the error associated with them. Decision tree analysis (DTA) was successfully used in retrieving the expert knowledge embedded in old soil survey data. This knowledge was efficiently used in developing predictive soil maps for the study areas in Benton and Malheur Counties, Oregon and accessing their consistency. A retrieved soil-landscape model from a reference area in Harney County was extrapolated to develop a preliminary soil map for the neighboring unmapped part of Malheur County. The developed map had a low prediction accuracy and only a few soil map units (SMUs) were predicted with significant accuracy, mostly those shallow SMUs that have either a lithic contact with the bedrock or developed on a duripan. On the other hand, the developed soil map based on field data was predicted with very high accuracy (overall was about 97%). Salt-affected areas of the Malheur County study area are indicated by their high spectral reflectance and they are easily discriminated from the remote sensing data. However, remote sensing data fails to distinguish between the different classes of soil salinity. Using the DTA method, five classes of soil salinity were successfully predicted with an overall accuracy of about 99%. Moreover, the calculated area of salt-affected soil was overestimated when mapped using remote sensing data compared to that predicted by using DTA. Hence, DTA could be a very helpful approach in developing soil survey and soil salinity maps in more objective, effective, less-expensive and quicker ways based on field data.