Download Free Analysis And Design Of Some New Active Power Filters For Power Quality Enhancement Book in PDF and EPUB Free Download. You can read online Analysis And Design Of Some New Active Power Filters For Power Quality Enhancement and write the review.

Maintaining a stable level of power quality in the distribution network is a growing challenge due to increased use of power electronics converters in domestic, commercial and industrial sectors. Power quality deterioration is manifested in increased losses; poor utilization of distribution systems; mal-operation of sensitive equipment and disturbances to nearby consumers, protective devices, and communication systems. However, as the energy-saving benefits will result in increased AC power processed through power electronics converters, there is a compelling need for improved understanding of mitigation techniques for power quality problems. This timely book comprehensively identifies, classifies, analyses and quantifies all associated power quality problems, including the direct integration of renewable energy sources in the distribution system, and systematically delivers mitigation techniques to overcome these problems. Key features: • Emphasis on in-depth learning of the latest topics in power quality extensively illustrated with waveforms and phasor diagrams. • Essential theory supported by solved numerical examples, review questions, and unsolved numerical problems to reinforce understanding. • Companion website contains solutions to unsolved numerical problems, providing hands-on experience. Senior undergraduate and graduate electrical engineering students and instructors will find this an invaluable resource for education in the field of power quality. It will also support continuing professional development for practicing engineers in distribution and transmission system operators.
As industry power demands become increasingly sensitive, power quality distortion becomes a critical issue. The recent increase in nonlinear loads drawing non-sinusoidal currents has seen the introduction of various tools to manage the clean delivery of power. Power demands of medical facilities, data storage and information systems, emergency equipment, etc. require uninterrupted, high quality power. Uninterruptible power supplies (UPS) and active filters provide this delivery. The first to treat these power management tools together in a comprehensive discussion, Uninterruptible Power Supplies and Active Filters compares the similarities of UPS, active filters, and unified power quality conditioners. The book features a description of low-cost and reduced-parts configurations presented for the first time in any publication, along with a presentation of advanced digital controllers. These configurations are vital as industries seek to reduce the cost of power management in their operations. As this field of power management technology continues to grow, industry and academia will come to rely upon the comprehensive treatment found within this book. Industrial engineers in power quality, circuits and devices, and aerospace engineers as well as graduate students will find this a complete and insightful resource for studying and applying the tools of this rapidly developing field.
Excessive utilization of power electronic devices and the increasing integration of renewable energy resources with their inverter-based interfaces into distribution systems have brought different power quality problems in these systems. There is no doubt that the transition from traditional centralized power systems to future decentralized smart grid necessities is paying much attention to power quality knowledge to realize better system reliability and performance to be ready for the big change in the coming years of accommodating thousands of decentralized generation units. This book aims to present harmonic modeling, analysis, and mitigation techniques for modern power systems. It is a tool for the practicing engineers of electrical power systems that are concerned with the power system harmonics. Likewise, it is a key resource for academics and researchers who have some background in electrical power systems.
Modeling and Control of Power Electronics Converter Systems for Power Quality Improvements provides grounded theory for the modeling, analysis and control of different converter topologies that improve the power quality of mains. Intended for researchers and practitioners working in the field, topics include modeling equations and the state of research to improve power quality converters. By presenting control methods for different converter topologies and aspects related to multi-level inverters and specific analysis related to the AC interface of drives, the book helps users by putting a particular emphasis on different control algorithms that enhance knowledge and research work. Present In-depth coverage of modeling and control methods for different converter topology Includes a particular emphasis on different control algorithms to give readers an easier understanding Provides a results and discussion chapter and MATLAB simulation to support worked examples and real-life application scenarios
This book presents select proceedings of the Electric Power and Renewable Energy Conference 2020 (EPREC-2020). It provides rigorous discussions, case studies, and recent developments in the emerging areas of power electronics, especially, power inverter and converter, electrical drives, regulated power supplies, operation of FACTS & HVDC, etc. The readers would be benefited in enhancing their knowledge and skills in these domain areas. The book will be a valuable reference for beginners, researchers, and professionals interested in advancements in power electronics and drives.
With success of ICEEE 2010 in Wuhan, China, and December 4 to 5, 2010, the second International Conference of Electrical and Electronics Engineering (ICEEE 2011) will be held in Macau, China, and December 1 to 2, 2011. ICEEE is an annual conference to call together researchers, engineers, academicians as well as industrial professionals from all over the world to present their research results and development activities in Electrical and Electronics Engineering along with Computer Science and Technology, Communication Technology, Artificial Intelligence, Information Technology, etc. This year ICEEE is sponsored by International Industrial Electronics Center, Hong Kong. And based on the deserved reputation, more than 750 papers have been submitted to ICEEE 2011, from which about 98 high quality original papers have been selected for the conference presentation and inclusion in the “Electrical and Electronics Engineering” book based on the referees’ comments from peer-refereed. We expect that the Electrical and Electronics Engineering book will be a trigger for further related research and technology improvements in the importance subject including Power Engineering, Telecommunication, Integrated Circuit, Electronic amplifier , Nano-technologies, Circuits and networks, Microelectronics, Analog circuits, Digital circuits, Circuits design, Silicon devices, Thin film technologies, VLSI, Sensors, CAD tools, Molecular computing, Superconductivity circuits, Antennas technology, System architectures, etc.
Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality. Its broad approach offers a journey that will allow power engineering professionals, researchers, and graduate students to learn more about the latest landmarks on the different APLC configurations for load active compensation. By introducing the issues and equipment needs that arise when correcting the lack of power quality in power grids, this book helps define power terms according to the IEEE Standard 1459. Detailed chapters discuss instantaneous reactive power theory and the theoretical framework that enabled the practical development of APLCs, in both its original and modified formulations, along with other proposals. Different APLCs configurations for load compensation are explored, including shunt APF, series APF, hybrid APF, and shunt combined with series APF, also known as UPQC. The book includes simulation examples carefully developed and ready for download from the book's companion website, along with different case studies where real APLCs have been developed. Finally, the new paradigm brought by the emergence of distribution systems with dispersed generation, such as the use of small power units based on gas technology or renewable energy sources, is discussed in a chapter where mitigation technologies are addressed in a distributed environment. - Combines the development of theories, control strategies, and the most widespread practical implementations of active power line conditioners, along with the most recent new approaches - Details updated and practical content on periodic disturbances mitigation technologies with special emphasis on distributed generation systems - Includes over 28 practical simulation examples in Matlab-Simulink which are available for download at the book's companion website, with 4 reproducible case studies from real APLCs
Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems. Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices. The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.
The increasing demand for cleaner and more intelligent energy solutions poses a challenge that resonates across academic, engineering, and policymaking spheres. The complexity of integrating renewable energy sources, energy storage solutions, and advanced communication technologies demands a comprehensive understanding, rigorous analysis, and innovative control strategies. The academic community, in particular, seeks a guiding light through this intricate maze of evolving energy dynamics. Modeling, Analysis, and Control of Smart Energy Systems is a groundbreaking publication that offers more than theoretical exploration; it is a roadmap equipped with the knowledge and tools required to shape the future of energy systems. From laying conceptual foundations to unraveling real-world case studies, the book seamlessly bridges the gap between theory and application. Its comprehensive coverage of mathematical modeling, dynamic system analysis, intelligent control strategies, and the integration of renewable energy sources positions it as an authoritative reference for researchers, engineers, and policymakers alike.
This book contains selected papers presented at Second International Symposium on Sustainable Energy and Technological Advancements (ISSETA 2023), organized by the Department of Electrical Engineering, NIT Meghalaya, Shillong, India, during February 24–25, 2023. The topics covered in the book are the cutting-edge research involved in sustainable energy technologies, smart building technology, integration and application of multiple energy sources; advanced power converter topologies and their modulation techniques; and information and communication technologies for smart micro-grids.