Download Free Analysis And Design Of A Multi Storey Reinforced Concrete Building Book in PDF and EPUB Free Download. You can read online Analysis And Design Of A Multi Storey Reinforced Concrete Building and write the review.

A sound and more modern Eurocode-based approach to design is the global approach, where the structures are considered as whole units, rather than to use traditional element-based design procedures. Although large frameworks and even whole buildings are now routinely analysed using computer packages, structural engineers do not always understand complex three-dimensional behaviour and thus manipulate the stiffness and the location of the bracing units to achieve an optimum structural arrangement. This guide deals with two categories of multi-storey structures. It can be used for the plane stress, stability and frequency analysis of individual bracing units such as frameworks, coupled shear walls and cores. In addition, and perhaps more importantly, it can be used for the three dimensional stress, stability and frequency analysis of whole buildings consisting of such bracing units. The closed-form solutions in the book may also prove to be useful at the preliminary design stage when quick checks are needed with different structural arrangements. Their usefulness cannot be overemphasized for checking the results of a finite element (computer-based) analysis when the input procedure involves tens of thousands of items of data and where mishandling one item of data may have catastrophic consequences. In addition to the critical load, the fundamental frequency, the maximum stresses and the top deflection of frameworks, coupled shear walls, cores and their spatial assemblies, a very important new piece of information is the "safety factor" of the structure (either a single unit or a whole building), which also acts as the performance indicator of the structure. MathCAD worksheets can be downloaded from the book’s accompanying website.
Forty scientists working in 13 different countries detail in this work the most recent advances in seismic design and performance assessment of reinforced concrete buildings. It is a valuable contribution in the mitigation of natural disasters.
Reflecting the historic first European seismic code, this professional book focuses on seismic design, assessment and retrofitting of concrete buildings, with thorough reference to, and application of, EN-Eurocode 8. Following the publication of EN-Eurocode 8 in 2004-05, 30 countries are now introducing this European standard for seismic design, for application in parallel with existing national standards (till March 2010) and exclusively after that. Eurocode 8 is also expected to influence standards in countries outside Europe, or at the least, to be applied there for important facilities. Owing to the increasing awareness of the threat posed by existing buildings substandard and deficient buildings and the lack of national or international standards for assessment and retrofitting, its impact in that field is expected to be major. Written by the lead person in the development of the EN-Eurocode 8, the present handbook explains the principles and rationale of seismic design according to modern codes and provides thorough guidance for the conceptual seismic design of concrete buildings and their foundations. It examines the experimental behaviour of concrete members under cyclic loading and modelling for design and analysis purposes; it develops the essentials of linear or nonlinear seismic analysis for the purposes of design, assessment and retrofitting (especially using Eurocode 8); and gives detailed guidance for modelling concrete buildings at the member and at the system level. Moreover, readers gain access to overviews of provisions of Eurocode 8, plus an understanding for them on the basis of the simple models of the element behaviour presented in the book. Also examined are the modern trends in performance- and displacement-based seismic assessment of existing buildings, comparing the relevant provisions of Eurocode 8 with those of new US prestandards, and details of the most common and popular seismic retrofitting techniques for concrete buildings and guidance for retrofitting strategies at the system level. Comprehensive walk-through examples of detailed design elucidate the application of Eurocode 8 to common situations in practical design. Examples and case studies of seismic assessment and retrofitting of a few real buildings are also presented. From the reviews: "This is a massive book that has no equal in the published literature, as far as the reviewer knows. It is dense and comprehensive and leaves nothing to chance. It is certainly taxing on the reader and the potential user, but without it, use of Eurocode 8 will be that much more difficult. In short, this is a must-read book for researchers and practitioners in Europe, and of use to readers outside of Europe too. This book will remain an indispensable backup to Eurocode 8 and its existing Designers’ Guide to EN 1998-1 and EN 1998-5 (published in 2005), for many years to come. Congratulations to the author for a very well planned scope and contents, and for a flawless execution of the plan". AMR S. ELNASHAI "The book is an impressive source of information to understand the response of reinforced concrete buildings under seismic loads with the ultimate goal of presenting and explaining the state of the art of seismic design. Underlying the contents of the book is the in-depth knowledge of the author in this field and in particular his extremely important contribution to the development of the European Design Standard EN 1998 - Eurocode 8: Design of structures for earthquake resistance. However, although Eurocode 8 is at the core of the book, many comparisons are made to other design practices, namely from the US and from Japan, thus enriching the contents and interest of the book". EDUARDO C. CARVALHO
The structural analysis of multi-storey buildings can be carried out using discrete (computer-based) models or creating continuum models that lead to much simpler albeit normally approximate results. The book relies on the second approach and presents the theoretical background and the governing differential equations (for researchers) and simple closed-form solutions (for practicing structural engineers). The continuum models also help to understand how the stiffness and geometrical characteristics influence the three-dimensional behaviour of complex bracing systems. The back-of-the-envelop formulae for the maximum deflection and rotation, load shares, fundamental frequency and critical load facilitate quick global structural analysis for even large buildings. It is shown how the global critical load ratio can be used for monitoring the "health" of the structure acting as a performance indicator and "safety factor". Evaluating the results of over sixteen hundred calculations, the accuracy of the procedures is comprehensively demonstrated by comparing the discrete and continuum results. Nineteen worked examples illustrate the use of the methods, whose downloadable MathCad and Excel worksheets (www.crcpress.com/ 9780367350253) can also be used as templates for similar practical situations.
Complete coverage of earthquake-resistant concrete building design Written by a renowned seismic engineering expert, this authoritative resource discusses the theory and practice for the design and evaluation of earthquakeresisting reinforced concrete buildings. The book addresses the behavior of reinforced concrete materials, components, and systems subjected to routine and extreme loads, with an emphasis on response to earthquake loading. Design methods, both at a basic level as required by current building codes and at an advanced level needed for special problems such as seismic performance assessment, are described. Data and models useful for analyzing reinforced concrete structures as well as numerous illustrations, tables, and equations are included in this detailed reference. Seismic Design of Reinforced Concrete Buildings covers: Seismic design and performance verification Steel reinforcement Concrete Confined concrete Axially loaded members Moment and axial force Shear in beams, columns, and walls Development and anchorage Beam-column connections Slab-column and slab-wall connections Seismic design overview Special moment frames Special structural walls Gravity framing Diaphragms and collectors Foundations
This second edition of Precast Concrete Structures introduces the conceptual design ideas for the prefabrication of concrete structures and presents a number of worked examples that translate designs from BS 8110 to Eurocode EC2, before going into the detail of the design, manufacture, and construction of precast concrete multi-storey buildings. Detailed structural analysis of precast concrete and its use is provided and some details are presented of recent precast skeletal frames of up to forty storeys. The theory is supported by numerous worked examples to Eurocodes and European Product Standards for precast reinforced and prestressed concrete elements, composite construction, joints and connections and frame stability, together with extensive specifications for precast concrete structures. The book is extensively illustrated with over 500 photographs and line drawings.
A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations
An exploration of the world of concrete as it applies to the construction of buildings, Reinforced Concrete Design of Tall Buildings provides a practical perspective on all aspects of reinforced concrete used in the design of structures, with particular focus on tall and ultra-tall buildings. Written by Dr. Bungale S. Taranath, this work explains t