Download Free Analysis And Control Of Boolean Networks Book in PDF and EPUB Free Download. You can read online Analysis And Control Of Boolean Networks and write the review.

Analysis and Control of Boolean Networks presents a systematic new approach to the investigation of Boolean control networks. The fundamental tool in this approach is a novel matrix product called the semi-tensor product (STP). Using the STP, a logical function can be expressed as a conventional discrete-time linear system. In the light of this linear expression, certain major issues concerning Boolean network topology – fixed points, cycles, transient times and basins of attractors – can be easily revealed by a set of formulae. This framework renders the state-space approach to dynamic control systems applicable to Boolean control networks. The bilinear-systemic representation of a Boolean control network makes it possible to investigate basic control problems including controllability, observability, stabilization, disturbance decoupling etc.
The first comprehensive treatment of probabilistic Boolean networks, unifying different strands of current research and addressing emerging issues.
This book constitutes the refereed proceedings of the Third International Conference on Algebraic Biology, AB 2008, held at the Castle of Hagenberg, Austria in July 2008 as part of the RISC Summer 2008, organized by the Research Institute for Symbolic Computation. The 14 revised full papers presented together with 3 tutorial lectures were carefully reviewed and selected from 27 submissions. The conference is the interdisciplinary forum for the presentation of research on all aspects of applications of symbolic computation (computer algebra, computational logic, and related methods) to various issues in biology and life sciences as well as other problems in biology being approached with symbolic methods.
The Boolean network (BN) is a mathematical model of genetic networks and other biological networks. Although extensive studies have been done on BNs from a viewpoint of complex systems, not so many studies have been undertaken from a computational viewpoint. This book presents rigorous algorithmic results on important computational problems on BNs, which include inference of a BN, detection of singleton and periodic attractors in a BN, and control of a BN. This book also presents algorithmic results on fundamental computational problems on probabilistic Boolean networks and a Boolean model of metabolic networks. Although most contents of the book are based on the work by the author and collaborators, other important computational results and techniques are also reviewed or explained.
Living beings require constant information processing for survival. In cells, information is being processed and propagated at various levels, from the gene regulatory network to chemical pathways, to the interaction with the environment. How this is achieved and how information is coded is still poorly understood. For example, what a cell interprets as information in the temporal level of an mRNA and what is interpreted as noise remains an open question. Recently, information theoretical methods and other tools, developed in the context of engineering and natural sciences, have been applied to study diverse biological processes. This book covers the latest findings on how information is processed in various biological processes, ranging from information processing and propagation in gene regulatory networks to information processing in natural language. An overview is presented of the state-of-the-art in information processing in biological systems and the opinion of current leaders in this research field on future research directions.
A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.
Networked systems are all around us. The accumulated evidence of systems as complex as a cell cannot be fully understood by studying only their isolated constituents, giving rise to a new area of interest in research ? the study of complex networks. In a broad sense, biological networks have been one of the most studied networks, and the field has benefited from many important contributions. By understanding and modeling the structure of a biological network, a better perception of its dynamical and functional behavior is to be expected. This unique book compiles the most relevant results and novel insights provided by network theory in the biological sciences, ranging from the structure and dynamics of the brain to cellular and protein networks and to population-level biology.
A comprehensive work in finite-value systems that covers the latest achievements using the semi-tensor product method, on various kinds of finite-value systems. These results occupy the highest position in the analysis and control of this field. It not only covers all aspects of research in finite-value systems, but also presents the mathematical derivation for each conclusion in depth. The book contains examples to provide a better understanding of the practical applications of finite-value systems. It will serve as a textbook for graduate students of Cybernetics, Mathematical, and Biology, and a reference for readers interested in the theory of finite-value systems.
Reasoning in Boolean Networks provides a detailed treatment of recent research advances in algorithmic techniques for logic synthesis, test generation and formal verification of digital circuits. The book presents the central idea of approaching design automation problems for logic-level circuits by specific Boolean reasoning techniques. While Boolean reasoning techniques have been a central element of two-level circuit theory for many decades Reasoning in Boolean Networks describes a basic reasoning methodology for multi-level circuits. This leads to a unified view on two-level and multi-level logic synthesis. The presented reasoning techniques are applied to various CAD-problems to demonstrate their usefulness for today's industrially relevant problems. Reasoning in Boolean Networks provides lucid descriptions of basic algorithmic concepts in automatic test pattern generation, logic synthesis and verification and elaborates their intimate relationship to provide further intuition and insight into the subject. Numerous examples are provide for ease in understanding the material. Reasoning in Boolean Networks is intended for researchers in logic synthesis, VLSI testing and formal verification as well as for integrated circuit designers who want to enhance their understanding of basic CAD methodologies.
This book constitutes the proceedings of the Third International Symposium on Dependable Software Engineering: Theories, Tools, and Applications, SETTA 2018, held in Beijing, China, in September 2018. The 9 full papers presented together with 3 short papers were carefully reviewed and selected from 22 submissions. The purpose of SETTA is to provide an international forum for researchers and practitioners to share cutting-edge advancements and strengthen collaborations in the field of formal methods and its interoperability with software engineering for building reliable, safe, secure, and smart systems.