Download Free Analyse Numerique En Electromagnetisme Book in PDF and EPUB Free Download. You can read online Analyse Numerique En Electromagnetisme and write the review.

La méthode TLM (Transmission Line Matrix) permet de résoudre un problème d'électromagnétisme et d'analyser le comportement de certains milieux. Il s'agit d'un outil performant qui bénéficie d'un développement important. Sa capacité à simuler avec précision des situations variées incluant des matériaux complexes est démontrée. Cet ouvrage en expose les bases théoriques et les principaux développements. La méthode historique en deux et trois dimensions et les dernières évolutions y sont détaillées pour aboutir aux noeuds sophistiqués les plus utilisés. Les simulations des milieux fermés et ouverts sont traitées et en particulier les frontières absorbantes (PML) pour les milieux ouverts. L'introduction d'éléments passifs ou actifs, la simulation de fils minces, la simulation des milieux dispersifs comme les plasmas ou les ferrites par l'utilisation de la transformée en Z sont étudiées.
Comment poser et résoudre les équations de Maxwell ? On présente ici les outils nécessaires : formulations faibles, éléments d’arêtes, méthodes intégrales, en insistant sur la modélisation, c’est-à-dire la « mise en équations » de situations concrètes : il y a en effet, pour chaque catégorie de problèmes en électrotechnique un modèle mathématique approprié, qu’il faut savoir dériver des équations fondamentales. Depuis sa rédaction, ce cours a été enseigné dans plusieurs formations doctorales européennes, destinées à des ingénieurs en électrotechnique et à des étudiants en analyse numérique.
Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed
This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry. * Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories and universal principles of different numerical methods and describes why and how different methods work. Readers will then understand any methods which have not been introduced and will be able to develop their own new methods. Organization Many of the most important numerical methods are covered in this book. All of these are discussed and compared with each other so that the reader has a clear picture of their particular advantage, disadvantage and the relation between each of them. The book is divided into four parts and twelve chapters.
Introduction -- Surface integral equation formulations and the method of moments -- Error analysis of the EFIE / with W.C. Chew -- Error analysis of the MFIE and CFIE / with C.P. Davis -- Geometrical singularities and the flat strip -- Resonant structures -- Error analysis for 3D problems -- Higher-order basis functions / with A.F. Peterson -- Operator spectra and iterative solution methods.
treated in more detail. They are just specimen of larger classes of schemes. Es sentially, we have to distinguish between semi-analytical methods, discretiza tion methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis func tions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary condi tions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some ap plications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4).
Numerical modeling now plays a central role in the design and study of electromagnetic systems. In the field of devices operating in low frequency, it is the finite element method that has come to the fore in recent decades. Today, it is widely used by engineers and researchers in industry, as well as in research centers. This book describes in detail all the steps required to discretize Maxwell’s equations using the finite element method. This involves progressing from the basic equations in the continuous domain to equations in the discrete domain that are solved by a computer. This approach is carried out with a constant focus on maintaining a link between physics, i.e. the properties of electromagnetic fields, and numerical analysis. Numerous academic examples, which are used throughout the various stages of model construction, help to clarify the developments.