Download Free Analog Vlsi Circuits For The Perception Of Visual Motion Book in PDF and EPUB Free Download. You can read online Analog Vlsi Circuits For The Perception Of Visual Motion and write the review.

Although it is now possible to integrate many millions of transistors on a single chip, traditional digital circuit technology is now reaching its limits, facing problems of cost and technical efficiency when scaled down to ever-smaller feature sizes. The analysis of biological neural systems, especially for visual processing, has allowed engineers to better understand how complex networks can effectively process large amounts of information, whilst dealing with difficult computational challenges. Analog and parallel processing are key characteristics of biological neural networks. Analog VLSI circuits using the same features can therefore be developed to emulate brain-style processing. Using standard CMOS technology, they can be cheaply manufactured, permitting efficient industrial and consumer applications in robotics and mobile electronics. This book explores the theory, design and implementation of analog VLSI circuits, inspired by visual motion processing in biological neural networks. Using a novel approach pioneered by the author himself, Stocker explains in detail the construction of a series of electronic chips, providing the reader with a valuable practical insight into the technology. Analog VLSI Circuits for the Perception of Visual Motion: analyses the computational problems in visual motion perception; examines the issue of optimization in analog networks through high level processes such as motion segmentation and selective attention; demonstrates network implementation in analog VLSI CMOS technology to provide computationally efficient devices; sets out measurements of final hardware implementation; illustrates the similarities of the presented circuits with the human visual motion perception system; includes an accompanying website with video clips of circuits under real-time visual conditions and additional supplementary material. With a complete review of all existing neuromorphic analog VLSI systems for visual motion sensing, Analog VLSI Circuits for the Perception of Visual Motion is a unique reference for advanced students in electrical engineering, artificial intelligence, robotics and computational neuroscience. It will also be useful for researchers, professionals, and electronics engineers working in the field.
Using the same strategy for the needs of image processing and pattern recognition, scientists and researchers have turned to computational intelligence for better research throughputs and end results applied towards engineering, science, business and financial applications. Handbook of Research on Computational Intelligence for Engineering, Science, and Business discusses the computation intelligence approaches, initiatives and applications in the engineering, science and business fields. This reference aims to highlight computational intelligence as no longer limited to computing-related disciplines and can be applied to any effort which handles complex and meaningful information.
"The objective of the book is to introduce and bring together well-known circuit design aspects, as well as to cover up-to-date outcomes of theoretical studies in decision-making, biologically-inspired, and artificial intelligent learning techniques"--Provided by publisher.
Intelligent/smart systems have become common practice in many engineering applications. On the other hand, current low cost standard CMOS technology (and future foreseeable developments) makes available enormous potentialities. The next breakthrough will be the design and development of "smart adaptive systems on silicon" i.e. very power and highly size efficient complete systems (i.e. sensing, computing and "actuating" actions) with intelligence on board on a single silicon die. Smart adaptive systems on silicon will be able to "adapt" autonomously to the changing environment and will be able to implement "intelligent" behaviour and both perceptual and cognitive tasks. At last, they will communicate through wireless channels, they will be battery supplied or remote powered (via inductive coupling) and they will be ubiquitous in our every day life. Although many books deal with research and engineering topics (i.e. algorithms, technology, implementations, etc.) few of them try to bridge the gap between them and to address the issues related to feasibility, reliability and applications. Smart Adaptive Systems on Silicon, though not exhaustive, tries to fill this gap and to give answers mainly to the feasibility and reliability issues. Smart Adaptive Systems on Silicon mainly focuses on the analog and mixed mode implementation on silicon because this approach is amenable of achieving impressive energy and size efficiency. Moreover, analog systems can be more easily interfaced with sensing and actuating devices.
The need for both intrinsic and extrinsic fiber-optic sensor technologies continues to grow. To meet the demands of this fast-expanding applications-driven market, this book discusses both the latest advances and recent application opportunities along with the basic optical phenomena, with the main emphasis on applying optical knowledge for solving real-life engineering problems. Key features of the book: • Highlights the uniqueness of fiber-optics sensors • Presents state-of-the-art technology in optical fiber sensors • Discusses a variety of fiber-optic topologies • Considers different detection techniques • Gives special attention to distributed fiber-optic sensing systems Basic tools and concepts are presented in the earlier chapters, which are then developed in more detail in the later chapters. The book is organized in seven chapters covering a broad range of fiber-optical sensing phenomena. Written for undergraduate and graduate students who want to broaden their knowledge of fiber-optic sensing system applications for real-life engineering problems, the volume is also valuable for engineers who want to acquire the basic principles of optics, especially fiber-optics.
Flying insects are intelligent micromachines capable of exquisite maneuvers in unpredictable environments. Understanding these systems advances our knowledge of flight control, sensor suites, and unsteady aerodynamics, which is of crucial interest to engineers developing intelligent flying robots or micro air vehicles (MAVs). The insights we gain when synthesizing bioinspired systems can in turn benefit the fields of neurophysiology, ethology and zoology by providing real-life tests of the proposed models. This book was written by biologists and engineers leading the research in this crossdisciplinary field. It examines all aspects of the mechanics, technology and intelligence of insects and insectoids. After introductory-level overviews of flight control in insects, dedicated chapters focus on the development of autonomous flying systems using biological principles to sense their surroundings and autonomously navigate. A significant part of the book is dedicated to the mechanics and control of flapping wings both in insects and artificial systems. Finally hybrid locomotion, energy harvesting and manufacturing of small flying robots are covered. A particular feature of the book is the depth on realization topics such as control engineering, electronics, mechanics, optics, robotics and manufacturing. This book will be of interest to academic and industrial researchers engaged with theory and engineering in the domains of aerial robotics, artificial intelligence, and entomology.
The refereed proceedings of the Joint International Conference on Artificial Neural Networks and International Conference on Neural Information Processing, ICANN/ICONIP 2003, held in Istanbul, Turkey, in June 2003. The 138 revised full papers were carefully reviewed and selected from 346 submissions. The papers are organized in topical sections on learning algorithms, support vector machine and kernel methods, statistical data analysis, pattern recognition, vision, speech recognition, robotics and control, signal processing, time-series prediction, intelligent systems, neural network hardware, cognitive science, computational neuroscience, context aware systems, complex-valued neural networks, emotion recognition, and applications in bioinformatics.
The proceedings of the IEEE Workshop held in Princeton, New Jersey, October 1991, comprise 46 contributed papers on topics in the areas of structure and motion from extended sequences, analysis of image flow, combined motion and stereo, models of human and biological vision, recovery of ego-motion,
This volume contains the proceedings of the 12th Italian Workshop on Neural Nets WIRN VIETRI-Ol, jointly organized by the International Institute for Advanced Scientific Studies "Eduardo R. Caianiello" (IIASS), the Societa Italiana Reti Neuroniche (SIREN), the IEEE NNC Italian RIG and the Italian SIG of the INNS. Following the tradition of previous years, we invited three foreign scientists to the workshop, Dr. G. Indiveri and Professors A. Roy and R. Sun, who respectively presented the lectures "Computation in Neuromorphic Analog VLSI Systems", "On Connectionism and Rule Extraction", "Beyond Simple Rule Extraction: Acquiring Planning Knowledge from Neural Networks" (the last two papers being part of the special session mentioned below). In addition, a review talk was presented, dealing with a very up-to-date topic: "NeuroJuzzy Approximator based on Mamdani's Model". A large part of the book contains original contributions approved by referees as oral or poster presentations, which have been assembled for reading convenience into three sections: Architectures and Algorithms, Image and Signal Processing, and Applications. The last part of the books contains the papers of the special Session "From Synapses to Rules". Our thanks go to Prof. B. Apolloni, who organized this section. Furthermore, two sections are dedicated to the memory of two great scientists who were friends in life, Professors Mark Aizerman and Eduardo R. Caianiello. The editors would like to thank the invited speakers, the review lecturers and all the contributors whose highly qualified papers helped with the success of the workshop.
An overview of neurotechnology, the engineering of robots based on animals and animal behavior. The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal's selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.