Download Free Analog Baseband Architectures And Circuits For Multistandard And Low Voltage Wireless Transceivers Book in PDF and EPUB Free Download. You can read online Analog Baseband Architectures And Circuits For Multistandard And Low Voltage Wireless Transceivers and write the review.

This book presents architectural and circuit techniques for wireless transceivers to achieve multistandard and low-voltage compliance. It provides an up-to-date survey and detailed study of the state-of-the-art transceivers for modern single- and multi-purpose wireless communication systems. The book includes comprehensive analysis and design of multimode reconfigurable receivers and transmitters for an efficient multistandard compliance.
This book presents architectural and circuit techniques for wireless transceivers to achieve multistandard and low-voltage compliance. It provides an up-to-date survey and detailed study of the state-of-the-art transceivers for modern single- and multi-purpose wireless communication systems. The book includes comprehensive analysis and design of multimode reconfigurable receivers and transmitters for an efficient multistandard compliance.
This book investigates solutions, benefits, limitations, and costs associated with multi-standard operation of RF front-ends and their ability to adapt to variable radio environments. Next, it highlights the optimization of RF front-ends to allow maximum performance within a certain power budget, while targeting full integration. Finally, the book investigates possibilities for low-voltage, low-power circuit topologies in CMOS technology.
This is the first book to describe most of the issues involved in the transition from a single standard to a Software Radio based wireless terminal. The book is both a technology tutorial for beginners as well as a starting point for technical professionals in the communication and IC design industry who are approaching the design of a Software Defined Radio. A complete overview of the actual state-of-art for reconfigurable transceivers is given in detail.
Low Power UWB CMOS Radar Sensors deals with the problem of designing low cost CMOS radar sensors. The radar sensor uses UWB signals in order to obtain a reasonable target separation capability, while maintaining a maximum signal frequency below 2 GHz. This maximum frequency value is well within the reach of current CMOS technologies. The use of UWB signals means that most of the methodologies used in the design of circuits and systems that process narrow band signals, can no longer be applied. Low Power UWB CMOS Radar Sensors provides an analysis between the interaction of UWB signals, the antennas and the processing circuits. This analysis leads to some interesting conclusions on the types of antennas and types of circuits that should be used. A methodology to compare the noise performance of UWB processing circuits is also derived. This methodology is used to analyze and design the constituting circuits of the radar transceiver. In order to validate the design methodology a CMOS prototype is designed and experimentally evaluated.
Various approaches for finding optimal values for the parameters of analog cells have made their entrance in commercial applications. However, a larger impact on the performance is expected if tools are developed which operate on a higher abstraction level and consider multiple architectural choices to realize a particular functionality. This book examines the opportunities, conditions, problems, solutions and systematic methodologies for this new generation of analog CAD tools.
Realizing maximum performance from high bit-rate and RF circuits requires close attention to IC technology, circuit-to-circuit interconnections (i.e., the ‘interconnect’) and circuit design. This detailed book covers each of these topics from theory to practice, with sufficient detail to help you produce circuits that are ‘first-time right’. Many practical circuit examples are included to demonstrate the interplay between technology, interconnect and circuit design.
Low-Power High-Speed ADCs for Nanometer CMOS Integration is about the design and implementation of ADC in nanometer CMOS processes that achieve lower power consumption for a given speed and resolution than previous designs, through architectural and circuit innovations that take advantage of unique features of nanometer CMOS processes. A phase lock loop (PLL) clock multiplier has also been designed using new circuit techniques and successfully tested. 1) A 1.2V, 52mW, 210MS/s 10-bit two-step ADC in 130nm CMOS occupying 0.38mm2. Using offset canceling comparators and capacitor networks implemented with small value interconnect capacitors to replace resistor ladder/multiplexer in conventional sub-ranging ADCs, it achieves 74dB SFDR for 10MHz and 71dB SFDR for 100MHz input. 2) A 32mW, 1.25GS/s 6-bit ADC with 2.5GHz internal clock in 130nm CMOS. A new type of architecture that combines flash and SAR enables the lowest power consumption, 6-bit >1GS/s ADC reported to date. This design can be a drop-in replacement for existing flash ADCs since it does require any post-processing or calibration step and has the same latency as flash. 3) A 0.4ps-rms-jitter (integrated from 3kHz to 300MHz offset for >2.5GHz) 1-3GHz tunable, phase-noise programmable clock-multiplier PLL for generating sampling clock to the SAR ADC. A new loop filter structure enables phase error preamplification to lower PLL in-band noise without increasing loop filter capacitor size.
Omnidirectional Inductive Powering for Biomedical Implants investigates the feasibility of inductive powering for capsule endoscopy and freely moving systems in general. The main challenge is the random position and orientation of the power receiving system with respect to the emitting magnetic field. Where classic inductive powering assumes a predictable or fixed alignment of the respective coils, the remote system is now free to adopt just any orientation while still maintaining full power capabilities. Before elaborating on different approaches towards omnidirectional powering, the design and optimisation of a general inductive power link is discussed in all its aspects. Special attention is paid to the interaction of the inductive power link with the patient’s body. Putting theory into practice, the implementation of an inductive power link for a capsule endoscope is included in a separate chapter.
Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The basic design concept consists in analog cell partitioning into the basic analog structures and sizing of these basic analog structures in a predefined procedural design sequence. The procedural design sequence ensures the correct propagation of design specifications, the verification of parameter limits and the local optimization loops. The proposed design procedure is also implemented as a CAD tool that follows this book.