Download Free Anaerobic Biotechnology For Industrial Wastewaters Book in PDF and EPUB Free Download. You can read online Anaerobic Biotechnology For Industrial Wastewaters and write the review.

Anaerobic biotechnology is a cost-effective and sustainable means of treating waste and wastewaters that couples treatment processes with the reclamation of useful by-products and renewable biofuels. This means of treating municipal, agricultural, and industrial wastes allows waste products to be converted to value-added products such as biofuels, biofertilizers, and other chemicals. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications provides the reader with basic principles of anaerobic processes alongside practical uses of anaerobic biotechnology options. This book will be a valuable reference to any professional currently considering or working with anaerobic biotechnology options.
There have been many significant microbiological, biochemical and technological advances made in the understanding and implementation of anaerobic digestion processes with respect to industrial and domestic wastewater treatment. Elucida tion of the mechanisms of anaerobic degradation has permitted a greater control over the biological parameters of waste conversion and the technical advances achieved have reduced the time and land area requirements and increased the cost-effectiveness and efficiency of the various processes presently in use. By product recovery in the form of utilisable methane gas has become increasingly feasible, while the development of new and superior anaerobic reactor designs with increased tolerance to toxic and shock loadings of concentrated effiuents has established a potential for treating many extremely recalcitrant industrial wastestreams. The major anaerobic bioreactor systems and their applications and limitations are examined here, together with microbiological and biochemical aspects of anaerobic wastewater treatment processes. London, June 1986 S. M. Stronach T. Rudd J. N. Lester v Table of Contents 1 The Biochemistry of Anaerobic Digestion 1 1. 1 Kinetics of Substrate Utilisation and Bacterial Growth 3 1. 1. 1 COD Fluxes and Mean Carbon Oxidation State 3 1. 1. 2 Bacterial Growth and Biokinetics 4 1. 1. 2. 1 Growth and Single Substrate Kinetics 4 1. 1. 2. 2 Multisubstrate Systems . 8 1. 2 Kinetics and Biochemistry of Hydrolysis 8 1. 3 Kinetics and Biochemistry of Fermentation and J1-0xidation . 11 1.
Environmental protection and resource recovery are two crucial issues facing our society in the 21st century. Anaerobic biotechnology has become widely accepted by the wastewater industry as the better alternative to the more conventional but costly aerobic process and tens of thousands of full-scale facilities using this technology have been installed worldwide in the past two decades. Anaerobic Biotechnology is the sequel to the well-received Environmental Anaerobic Technology: Applications and New Developments (2010) and compiles developments over the past five years. This volume contains contributions from 48 renowned experts from across the world, including Gatze Lettinga, laureate of the 2007 Tyler Prize and the 2009 Lee Kuan Yew Water Prize, and Perry McCarty, whose pioneering work laid the foundations for today's anaerobic biotechnology. This book is ideal for engineers and scientists working in the field, as well as decision-makers on energy and environmental policies.
This book presents a state-of-the-art report on the treatment of pulp and paper industry effluents using anaerobic technology. It covers a comprehensive range of topics, including the basic reasons for anaerobic treatment, comparison between anaerobic and aerobic treatment, effluent types suitable for anaerobic treatment, design considerations for anaerobic treatment, anaerobic reactor configurations applied for treatment of pulp and paper industry effluents, present status of anaerobic treatment in pulp and paper industry, economic aspects, examples of full scale installations and future trends.
Biological Treatment of Industrial Wastewater presents a comprehensive overview of the latest advances and trends in the use of bioreactors for treating industrial wastewater.
A deeper insight into the complex processes involved in this field, covering the biological, chemical and engineering fundamentals needed to further develop effective methodologies. The book devotes detailed chapters to each of the four main areas of environmental biotechnology -- wastewater treatment, soil treatment, solid waste treatment, and waste gas treatment -- dealing with both the microbiological and process engineering aspects. The result is the combined knowledge contained in the extremely successful volumes 11a through 11c of the "Biotechnology" series in a handy and compact form.
With increasing government regulation of pollution, as well as willingness to levy punitive fines for transgressions, treatment of industrial waste is a important subject. This book is a single source of information on treatment procedures using biochemical means for all types of solid, liquid and gaseous contaminants generated by various chemical and allied industries. This book is intended for practicing environmental engineers and technologists from any industry as well as researchers and professors. The topics covered include the treatment of gaseous, liquid and solid waste from a large number of chemical and allied industries that include dye stuff, chemical, alcohol, food processing, pesticide, pharmaceuticals, paint etc. Information on aerobic and anaerobic reactors and modeling and simulation of waste treatment systems are also discussed.* Compares chemical and biochemical means of industrial waste treatment* Provides details of technology (i.e. reactors, operating conditions etc) with regard to the biochemistry aspects.* Can be used as a teaching aid for graduate courses and a reference material by practicing environmental scientists and engineers.* Researchers can extract synergy between treatment procedures and various effluents.
Biotechnology in Industrial Waste Treatment and Bioremediation addresses the increasingly important topic of waste treatment. Focusing on microbiological degradation of contaminants, it offers a representative picture of the current status of environmental biotechnology and lays a solid foundation of the methods and applications of bioremediation. The expert presentations of case studies in this new book demonstrate successful treatment schemes and technologies meeting regulatory standards. These case studies represent an international cross-section of strategies for developing and implementing the evolving technologies of bioremediation. Biotechnology in Industrial Waste Treatment and Bioremediation examines the primary waste streams, including air, water, soils, and sediments, and explores specific treatment methodologies for industrial and environmental contaminants. This broad and unique coverage allows treatment firms and regulatory authorities to determine and develop appropriate treatment strategies for site-specific problems of waste remediation. The observations and successful field applications compiled in Biotechnology in Industrial Waste Treatment and Bioremediation make it an excellent reference for understanding, evaluating, developing, and operating efficient and cost-effective full-scale treatment systems.
Biotechnology is a collection of technologies that capitalise on the attributes of cells and biological molecules. Biotechnology will help improve the ability to customise therapies based on individual genomics; prevent, diagnose, and treat all types of diseases rather than rely on rescue therapy and provide breakthroughs in agricultural production and food safety. This book offers new research in this growing field.