Download Free An Overview Of The Motional Stark Effect Diagnostic On Diii D And Design Work For An Iter Mse Book in PDF and EPUB Free Download. You can read online An Overview Of The Motional Stark Effect Diagnostic On Diii D And Design Work For An Iter Mse and write the review.

The advanced tokamak research program at DIII-D relies critically on the measurement of the current density profile. This was made possible by the development of a Motional Stark Effect (MSE) polarimeter that was first installed in 1992. Three major upgrades have since occurred, and improvements in our understanding of critical performance issues and calibration techniques are ongoing. In parallel with these improvements, we have drawn on our DIII-D experience to begin studies and design work for MSE on burning plasmas and ITER. This paper first reviews how Motional Stark Effect polarimetry (MSE) is used to determine the tokamak current profile. It uses the DIII-D MSE system as an example, and shows results from the latest upgrade that incorporates an array of channels from a new counter-Ip injected neutral beam. The various calibration techniques presently used are reviewed. High-leverage or unresolved issues affecting MSE performance and reliability in ITER are discussed. Next, we show a four-mirror collection optics design for the two ITER MSE views. Finally, we discuss measurements of the polarization properties of a few candidate mirrors for the ITER MSE.
ITER (the International Thermonuclear Experimental Reactor, a joint venture between Europe, Japan, Russia, USA, China, India and South Korea) will need to measure a wide range of plasma parameters in order to reach and sustain high levels of fusion power and provide input to control systems with adequate reliability and long-term stability. The conference was the first appointment of the diagnostic community after the approval of ITER, and was therefore an opportunity to review the status of ITER diagnostics with particular reference to the capabilities of the present proposed systems to meet the requirements on the measurements. Critical issues related with the measurements of fast particles, fusion products, plasma facing components and radiation effects were addressed as well as new areas of diagnostic developments related with DEMO, the next step fusion reactor that will deliver electrical power from fusion.
The Motional Stark Effect (MSE) diagnostic will be essential for the study of advanced scenarios on ITER and its design is currently underway. In order meet the ITER MSE diagnostic design requirements, two approaches for the measurement are under consideration. The first is based on standard polarimeter techniques to measure the polarization of the emitted light, whereas the second measures the Stark splitting from which.
Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E{sub R} profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array.
Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Applied, Analytical, and Imaging Sciences Research. The editors have built Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Applied, Analytical, and Imaging Sciences Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
The Motional Stark Effect (MSE) diagnostic is unique in its ability to measure the current profile and will be essential in ITER for detailed analysis of Advanced Tokamak (AT) and other types of discharges. However, design of a MSE diagnostic for ITER presents many unique challenges. Among these is optical analysis for the convoluted optical path, required for effective neutron shielding, that employs several reflective optics arranged to form a labyrinth. The geometry of the diagnostic has been laid out and the expected Doppler shifts and channel resolution calculated. A model of the optical train has also been developed based on the Mueller matrix formalism. Unfolding the pitch angle for this complicated geometry is not straightforward and possible methods are evaluated. The CORSICA code is used to model a variety of ITER discharges including start-up, Ipramp and reverse shear. The code also incorporates a synthetic MSE diagnostic that can be used to evaluate different viewing locations and optimize channel locations for the above discharges. Simulation of the optical emission spectrum is also underway.
The measurement and control of the plasma current density profile (or q profile) is critical to the advanced tokamak program on DIII-D.A complete understanding of the stability and transport properties of advanced operating regimes requires detail poloidal field measurements over the entire plasma radius from the core to the edge. In support of this effort, the authors have recently completed an upgrade of the existing MSE diagnostic, increasing the number of channels from 8 to 16. A new viewing geometry has been added to the outer edge of the plasma which improves the radial resolution in this region from 10 cm to
Motional Stark effect produces large net linear polarization of hydrogenic beam emissions. Measurement of the polarization direction permits to determine the local magnetic field pitch angle. Design of a single point, spatially scannable, high-sensitivity polarimeter installed on DIII-D is described. Excellent signal-to-noise ratio with good temporal and spatial resolution was obtained in preliminary measurements of magnetic field pitch angle. 9 refs., 3 figs.