Download Free An Iterative Information Reduced Quadriphase Shift Keyed Carrier Synchronization Scheme Using Decision Feedback For Low Signal To Noise Ratio Applications Book in PDF and EPUB Free Download. You can read online An Iterative Information Reduced Quadriphase Shift Keyed Carrier Synchronization Scheme Using Decision Feedback For Low Signal To Noise Ratio Applications and write the review.

In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued. Simon, M. and Tkacenko, A. Jet Propulsion Laboratory IPN-PR-42-164
An important look at bandwidth-efficient modulations with applications to today's Space program Based on research and results obtained at the California Institute of Technology's Jet Propulsion Laboratory, this timely book defines, describes, and then delineates the performance (power and bandwidth) of digital communication systems that incorporate a wide variety of bandwidth-efficient modulations appropriate for the design and implementation of space communications systems. The author compares the performance of these systems in the presence of a number of practical (non-ideal) transmitter and receiver characteristics such as modulator and phase imbalance, imperfect carrier synchronization, and transmitter nonlinearity. Although the material focuses on the deep space applications developed at the Jet Propulsion Laboratory, the presentation is sufficiently broad as to be applicable to a host of other applications dealing with RF communications. An important contribution to the scientific literature, Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications * was commissioned by the JPL Deep Space Communications and Navigation System Center of Excellence * highlights many NASA-funded technical contributions pertaining to deep space communications systems * is a part of the prestigious Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind.
This study focuses on the most recent research into the interaction between Digital Signal Processing (DSP) and telecommunications. Particular emphasis is given to the description of advanced techniques and system architectures in the fields of signal encoding and transmission for multimedia and personal communications. The contributions are from leading international experts in the field either in the form of tutorials or in-depth case studies. The main topics are: Applications of DSP to personal communication networks, Joint source/channel coding for multimedia applications, DSP in channel estimation/equalisation and modem design, Signal processing in satellite networks, Advanced signal processing techniques, Recent applications of DSP techniques. Signal Processing in Telecommunications offers an informed overview of the subject. In particular, modern approaches to some key design issues are considered.
This book introduces the reader to the concept of an autonomous software-defined radio (SDR) receiver. Each distinct aspect of the design of the receiver is treated in a separate chapter written by one or more leading innovators in the field. Chapters begin with a problem statement and then offer a full mathematical derivation of an appropriate solution, a decision metric or loop-structure as appropriate, and performance results.
Future communication networks aim to build an intelligent and efficient living environment by connecting a variety of heterogeneous networks to fulfill complicated tasks. These communication networks bring significant challenges in building secure and reliable communication networks to address the numerous threat and privacy concerns. New research technologies are essential to preserve privacy, prevent attacks, and achieve the requisite reliability. Security, Privacy and Reliability in Computer Communications and Networks studies and presents recent advances reflecting the state-of-the-art research achievements in novel cryptographic algorithm design, intrusion detection, privacy preserving techniques and reliable routing protocols. Technical topics discussed in the book include: Vulnerabilities and Intrusion DetectionCryptographic Algorithms and EvaluationPrivacy Reliable Routing Protocols This book is ideal for personnel in computer communication and networking industries as well as academic staff and collegial, master, Ph.D. students in computer science, computer engineering, cyber security, information insurance and telecommunication systems.
This book provides a concise but lucid explanation of the fundamentals of spread-spectrum systems with an emphasis on theoretical principles. Throughout the book, learning is facilitated by many new or streamlined derivations of the classical theory. Problems at the end of each chapter are intended to assist readers in consolidating their knowledge and to provide practice in analytical techniques. The choice of specific topics is tempered by the author’s judgment of their practical significance and interest to both researchers and system designers. The evolution of spread spectrum communication systems and the prominence of new mathematical methods in their design provided the motivation to undertake this new edition of the book. This edition is intended to enable readers to understand the current state-of-the-art in this field. More than 20 percent of the material in this edition is new, including a chapter on systems with iterative channel estimation, and the remainder of the material has been thoroughly revised.
Synchronization is a critical function in digital communications; its failures may have catastrophic effects on the transmission system performance. Furthermore, synchronization circuits comprehend such a large part of the receiver hardware that their implementation has a substantial impact on the overall costs. For these reasons design engineers are particularly concerned with the development of new and more efficient synchronization structures. Unfortunately, the advent of digital VLSI technology has radically affected modem design rules, to a point that most analog techniques employed so far have become totally obsolete. Although digital synchronization methods are well established by now in the literature, they only appear in the form of technical papers, often concentrating on specific performance or implementation issues. As a consequence they are hardly useful to give a unified view of an otherwise seemingly heterogeneous field. It is widely recognized that a fundamental understanding of digital synchronization can only be reached by providing the designer with a solid theoretical framework, or else he will not know where to adjust his methods when he attempts to apply them to new situations. The task of the present book is just to develop such a framework.
Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.
RF and Microwave Transmitter Design is unique in its coverage of both historical transmitter design and cutting edge technologies. This text explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters' pracitcal designs and their components. Jam-packed with information, this book broadcasts and streamlines the author's considerable experience in RF and microwave design and development.