Download Free An Investigation Of The Kinetics Of Hydrogen Chemisorption On Iron Metal Surfaces Book in PDF and EPUB Free Download. You can read online An Investigation Of The Kinetics Of Hydrogen Chemisorption On Iron Metal Surfaces and write the review.

Many processes of the chemical industry are based upon heterogeneous catalysis. Two important items of these processes are the development of the catalyst itself and the design and optimization of the reactor. Both aspects would benefit from rigorous and accurate kinetic modeling, based upon information on the working catalyst gained from classical steady state experimentation, but also from studies using surface science techniques, from quantum chemical calculations providing more insight into possible reaction pathways and from transient experimentation dealing with reactions and reactors. This information is seldom combined into a kinetic model and into a quantitative description of the process. Generally the catalytic aspects are dealt with by chemists and by physicists, while the chemical engineers are called upon for mechanical aspects of the reactor design and its control. The symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis" aims at illustrating a more global and concerted approach through a number of prestigious keynote lectures and severely screened oral and poster presentations.
A quasi-isothermal approach was used to study the kinetics of hydrogen and hydrogen sulfide chemisorption onto iron film in an effort to understand the environmental degradation of steels. The coverage of chemisorbed hydrogen or chemisorbed sulfur was observed as a function of time for fixed conditions of substrate temperature. Auger electron spectroscopy was used to observe the sulfur and chemisorption-induced resistance change was employed to monitor hydrogen coverage. To compare the results obtained from studying the kinetics by two different techniques, the kinetics of oxygen chemisorption onto iron films was also studied. A reaction model utilized to interpret the H2/Fe2 chemisorption kinetics was applied to data from an earlier study on the desorption kinetics for H2 chemisorbed onto nicket films in the vicinity of the Curie temperature of the film. This analysis permitted a separation of the gross desorption process into individual components so that the influence of the magnetic phase transition on the rate constants could be determined. Shanabarger, M. R. Unspecified Center NASA-CR-168555 NSG-2222...