Download Free An Investigation Of The Co Ordination Chemistry Of Molybdenum With Ligands Of Biological Significance Book in PDF and EPUB Free Download. You can read online An Investigation Of The Co Ordination Chemistry Of Molybdenum With Ligands Of Biological Significance and write the review.

In retrospect, it was obvious that we were both, quite inde pendently, contemplating a conference on the role of molybdenum in biology and related chemistry. At the time though, the meeting of minds on this matter was quite surprising. Although this subject has been treated in previous meetings within the overall context of, say, magnetic resonance or nitrogen fixation, it was apparent to us both that research in molybdenum-containing enzymes and molyb denum chemistry had progressed rapidly in the last several years. Jointly, we decided to organize the first meeting on Molybdenum Chemistry of Biological Significance which was held at the Hotel Lake Biwa, Shiga, Japan, on April 10-13, 1979. This volume con stitutes the Proceedings of that international conference and covers the broad spectrum of interests from enzymes to coordination chemistry. It should serve not only as a source of new information on the latest research results in this area and as a useful ref erence tool, but should also allow a newcomer or other peripherally interested researcher to become conversant very rapidly with the "state-of-the-art" in this specialized and important area of research. The conference was sponsored by the Japan Society for the Promotion of Science, the Japan World Exposition Commemerative Fund the Yamada Science Foundation, the Nissan Science Foundation, the Chemical Society of Japan (Kinki Regional Office) and the Agri cultural Chemical Society of Japan (Kansai Branch). We thank these organizations sincerely for their interest and generosity.
Molybdenum is an essential trace element for virtually all life forms. It functions as a co-factor for a number of enzymes that catalyse important chemical transformations in the global carbon, nitrogen, and sulphur cycles. Thus, molybdenum-dependent enzymes are not only required for human health, but also for the health of our ecosystem. Molybdenum and its compounds are also very important in catalysis and in medicine, so it is not surprising that its biological and coordination chemistry remain very active areas of research. The enormous chemistry of molybdenum, much of which remains untapped, was investigated over many years by two icons: Edward I Stiefel and A Geoffrey Sykes. Ed and Geoff, as they were affectionately called by many of their friends and research students, are being honoured for their contributions to research on molybdenum with this textbook.
There has been enormous progress in our understanding of molybdenum and tungsten enzymes and relevant inorganic complexes of molybdenum and tungsten over the past twenty years. This set of three books provides a timely and comprehensive overview of the field and documents the latest research. Building on the first volume that focussed on biochemistry aspects, the second volume in the set focusses on the inorganic complexes that model the structures and reactivity of the active sites of each major group of molybdenum and tungsten enzymes. Special attention is given to synthetic strategies, reaction mechanism and chemical kinetics of these systems. The introductory chapter provides a useful overview and places the topic of the book into a wider context. This text will be a valuable reference to workers both inside and outside the field, including graduate students and young investigators interested in developing new research programs in this area.
Molybdenum is an element with an extremely rich and interesting chemistry having very versatile applications in various fields of human activity. It is used extensively in metallurgical applications. Because of their anti-wear properties, molybdenum compounds find wide applications as lubricants - particularly in extreme or hostile environmental situations. Many molybdates and heteropolymolybdates are white and therefore used as pigments. In addition, they are non-toxic and act as efficient corrosion inhibitors and smoke suppressants. Hydroprocessing of petroleum is one of the largest industries employing heterogeneous catalysts. Molybdenum catalysts have shown great promise in the liquefaction of coal and this may develop into one of its most important catalytic uses. The use of molybdenum compounds in homogeneous catalysis is also significant. Three important classes of molybdenum compounds in the solid state are reviewed, viz., oxides, sulphides and halides. The role of molybdenum in inorganic catalysis and enzymes receives prominent mention because of their impact on the progress of science and technology. Further biochemical and enzymic factors are discussed in separate chapters and their reaction to agriculture and animal husbandry. A new classification of covalent compounds which abandons the traditional oxidation state concept allows a powerful approach to the organisation of the complex and rich chemistry of molybdenum. Dramatic colour diagrams of abundances of molybdenum compounds provide broad insights into the important features and trends in the chemistry of molybdenum including reactivity and mechanism. The book is intended for use mainly as a research monograph by the many workers who may encounter molybdenum chemistry or who are looking for its application and potential uses in different technological fields. However, it will also serve as an advanced text for university lecturers and postgraduate students interested in inorganic, physical and industrial chemistry, chemical technology or biochemistry and biotechnology.
There has been enormous progress in our understanding of molybdenum and tungsten enzymes and relevant inorganic complexes of molybdenum and tungsten over the past twenty years. This set of three books provides a timely and comprehensive overview of the field and documents the latest research. Building on the first and second volumes that focussed on biochemistry and bioinorganic chemistry aspects, the third volume focusses on spectroscopic and computational methods that have been applied to both enzymes and model compounds. A particular emphasis is placed on how these important studies have been used to reveal critical components of enzyme mechanisms.This text will be a valuable reference to workers both inside and outside the field, including graduate students and young investigators interested in developing new research programs in this area.
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment. Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters