Download Free An Investigation Of Antimony Adsorption By Zero Valent Iron Nanoparticles Nzvi Book in PDF and EPUB Free Download. You can read online An Investigation Of Antimony Adsorption By Zero Valent Iron Nanoparticles Nzvi and write the review.

This is the first complete edited volume devoted to providing comprehensive and state-of-the art descriptions of science principles and pilot- and field-scaled engineering applications of nanoscale zerovalent iron particles (NZVI) for soil and groundwater remediation. Although several books on environmental nanotechnology contain chapters of NZVI for environmental remediation (Wiesner and Bottero (2007); Geiger and Carvalho-Knighton (2009); Diallo et al. (2009); Ram et al. (2011)), none of them include a comprehensive treatment of the fundamental and applied aspects of NZVI applications. Most devote a chapter or two discussing a contemporary aspect of NZVI. In addition, environmental nanotechnology has a broad audience including environmental engineers and scientists, geochemists, material scientists, physicists, chemists, biologists, ecologists and toxicologists. None of the current books contain enough background material for such multidisciplinary readers, making it difficult for a graduate student or even an experienced researcher or environmental remediation practitioner new to nanotechnology to catch up with the massive, undigested literature. This prohibits the reader from gaining a complete understanding of NZVI science and technology. In this volume, the sixteen chapters are based on more than two decades of laboratory research and development and field-scaled demonstrations of NZVI implementation. The authors of each chapter are leading researchers and/or practitioners in NZVI technology. This book aims to be an important resource for all levels of audiences, i.e. graduate students, experienced environmental and nanotechnology researchers, and practitioners evaluating environmental remediation, as it is designed to involve everything from basic to advanced concepts.
Environmental analysis techniques have advanced due to the use of nanotechnologies in improving the detection sensitivity and miniaturization of the devices in analytical procedures. These allow for developments such as increases in analyte concentration, the removal of interfering species and improvements in the detection limits. Bridging a gap in the literature, this book uniquely brings together state-of-the-art research in the applications of novel nanomaterials to each of the classical components of environmental analysis, namely sample preparation and extraction, separation and identification by spectroscopic techniques. Special attention is paid to those approaches that are considered greener and reduce the cost of the analysis process both in terms of chemicals and time consumption. Advanced undergraduates, graduates and researchers at the forefront of environmental science and engineering will find this book a good source of information. It will also help regulators, decision makers, surveillance agencies and the organizations assessing the impact of pollutants on the environment.
The key to understanding the relationship between the geological environment and human health Medical geology deals with of the impact of environmental factors on the health of individual human beings and communities. In particular, it studies environmental exposure to both macro- and micronutrients in the geosphere, hydrosphere, and atmosphererespectively, soil, water, and airborne dustwhich may positively or negatively impact human growth, development, and overall health. The insights contributed by this burgeoning field can aid not only in individual medical cases, but also in assessing disproportionately impacted communities and addressing global medical inequality. Medical Geology: En route to One Health is among the first books to address this vital subject by summarizing recent research in this field. It also serves as an introduction to the multidisciplinary One Health methodology, which unites medical, geological, and environmental insights in one continuous approach to public health. Medical Geology readers will also find: An explanation of the influence of climate on nutrient availability Case studies of well-documented links between endemic diseases and environmental conditions A systematic analysis of the causes of essential element deficiencies in different world regions Medical Geology is an essential overview of the field, for advanced students as well as medical, environmental, or geological researchers who wish to understand the complex relationship between the geological environment and human health.
This book contains both practical and theoretical aspects of groundwater resources relating to geochemistry. Focusing on recent research in groundwater resources, this book helps readers to understand the hydrogeochemistry of groundwater resources. Dealing primarily with the sources of ions in groundwater, the book describes geogenic and anthropogenic input of ions into water. Different organic, inorganic and emerging contamination and salinity problems are described, along with pollution-related issues affecting groundwater. New trends in groundwater contamination remediation measures are included, which will be particularly useful to researchers working in the field of water conservation. The book also contains diverse groundwater modelling examples, enabling a better understanding of water-related issues and their management. Groundwater Geochemistry: Pollution and Remediation offers the reader: An understanding of the quantitative and qualitative challenges of groundwater resources An introduction to the environmental geochemistry of groundwater resources A survey of groundwater pollution-related issues Recent trends in groundwater conservation and remediation Mathematical and statistical modeling related to groundwater resources Students, lecturers and researchers working in the fields of hydrogeochemistry, water pollution and groundwater will find Groundwater Geochemistry an essential companion.
This book presents the environmental benefits of nanomaterials in agriculture, water purification and nanomedicine. Nanotechnology will modify the environment both in a positive and negative way. On the one hand, new nanomaterials are promising for reducing greenhouse gases, cleaning toxic wastes and building alternative energy sources. On the other hand, some toxic nanoparticles enter and disrupt ecosystems. Therefore, research should focus on the sustainable use of nanomaterials to avoid environmental contamination. This volume is the first of several volumes on Environmental Nanotechnology, which will be published in the series Environmental Chemistry for a Sustainable World.
Nanomaterials for the Detection and Removal of Wastewater Pollutants assesses the role of nanotechnology and nanomaterials in improving both the detection and removal of inorganic and organic contaminants from wastewater that originates from municipal and industrial plants. The book covers how nanotechnology is being used to remove common contaminants, including dyes, chlorinated solvents, nitrites/nitrates, and emerging contaminants, such as pharmaceuticals, personal care products and pesticides. Sections cover nanofiltration, adsorption and remediation. Nanomaterial immobilization recovery is also addressed, along with the quantification of heat/mass transport limitations, sizing aspects and transport phenomena. Finally, regulatory aspects regarding contaminants and nanoparticles in the environment are covered. This book is an important resource for both materials scientists and environmental scientists looking to see how nanotechnology can play a role in making wastewater a less hazardous part of the global ecosystem. - Addresses the role of new nanotechnology-based solutions for the detection and removal of common and emerging contaminants - Discusses the environmental impact of nanoparticles used in wastewater contaminant detection and removal - Explores the major challenges for using nanomaterials to detect and remove contaminants from wastewater
As industry develops globally, environmental pollution grows to be an increasingly serious problem with each passing year. While there are many things that individuals on every level of power can do to mitigate the harm done to the environment, environmental remediation is a step to take to save our soil and water resources. As this problem is ongoing, it is essential to be knowledgeable in the emerging techniques made within the field of environmental remediation. The Research Anthology on Emerging Techniques in Environmental Remediation is a comprehensive resource on the emerging techniques and developments made within the field of environmental remediation. With global contributing authors, this book explores environmental remediation within diverse settings and international standards. Covering topics such as pollution and contamination, nanotechnology, and agriculture, this book is an essential reference for scientists, chemists, environmentalists, government officials, professors, students, researchers, conservationists, and academicians.
This book discusses new and innovative trends and techniques in the application of nanotechnology to industrial wastewater treatment both at a laboratory scale and an industry scale, including treatment, remediation, sensing and pollution prevention. The book also explores unique physicochemical and surface properties of nanoparticles; it highlights advantages they provide for engineering applications. Each chapter covers a different nanotechnology-based approach and examines basic principles, practical applications, recent breakthroughs and associated limitations. Nanotechnology applications to wastewater research have significant impact in maintaining the long-term quality, availability and viability of water. Regardless of the origin—for example, municipal or industrial wastewater—the remediation nanotechnology allows water to be recycled and desalinized in addition to simultaneously detecting biological and chemical contamination. The book describes a broad area of nanotechnology and water research where membrane processes (nanofiltration, ultrafiltration, reverse osmosis and nanoreactive membranes) are considered key components of advanced water purification and desalination technologies that remove, reduce or neutralize water contaminants. Various nanoparticles and nanomaterials that could be used in water remediation (zeolites, carbon nanotubes, self-assembled monolayers on mesoporous supports, biopolymers, single-enzyme nanoparticles, zero-valent iron nanoparticles, bimetallic iron nanoparticles and nanoscale semiconductor photocatalysts) are also discussed. This book is beneficial for students and academicians to understand the recent research advancements in the field.
Comprehensive Membrane Science and Engineering, Four Volume Set covers all aspects of membrane science and technology - from basic phenomena to the most advanced applications and future perspectives. Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. The work presents researchers and industrial managers with an indispensable tool toward achieving these aims. Covers membrane science theory and economics, as well as applications ranging from chemical purification and natural gas enrichment to potable water Includes contributions and case studies from internationally recognized experts and from up-and-coming researchers working in this multi-billion dollar field Takes a unique, multidisciplinary approach that stimulates research in hybrid technologies for current (and future) life-saving applications (artificial organs, drug delivery)
This volume provides in-depth coverage of environmental pollution sources, waste characteristics, control technologies, management strategies, facility innovations, process alternatives, costs, case histories, effluent standards, and future trends in waste treatment processes. It delineates methodologies, technologies, and the regional and global effects of important pollution control practices. It focuses on specific industrial and manufacturing wastes and their remediation. Topics include: heavy metals, electronics, chemical, and textile manufacturing.