Download Free An Investigation Into The Kinetics Of Redox Reactions Book in PDF and EPUB Free Download. You can read online An Investigation Into The Kinetics Of Redox Reactions and write the review.

This series of volumes aims to publish authoritative review articles on a wide range of exciting and contemporary topics in gas and condensed phase kinetics. Research in Chemical Kinetics complements the acclaimed series Comprehensive Chemical Kinetics, and is edited by the same team of professionals. The reviews contained in this volume are concise, topical accounts of specific research written by acknowledged experts. The authors summarize their latest work and place it in a general context. Particular strengths of the volume are the quality of the contributions and their topicality, and the rapid publication realized.
This book addresses primarily the engineer in industrial process development, the research chemist in academia and industry, and the graduate student intending to become a reaction engineer. In industry, competitive pressures put a premium on scale-up by large factors to cut development time. To be safe, such development should be based on "fundamental" kinetics that reflect the elementary steps of which the reaction consists. The book forges fundamental kinetics into a practical tool by presenting new, effective methods for elucidation of mechanisms and reduction of complexity without unacceptable sacrifice in accuracy: fewer equations (lesser computational load), fewer coefficients (fewer experiment to determine them). For network elucidation, new rules relating network configurations to observable kinetic behaviour allow incorrect networks to be ruled out by whole classes instead of one by one. For modelling, general equations and algorithms are given from which equations for specific networks can be recovered by simple substitutions. The procedures are illustrated with examples of industrial reactions including, among others, paraffin oxidation, ethoxylation, hydroformylation, hydrocyanation, shape-selective catalysis, ethane pyrolysis, styrene polymerization, and ethene oligomerization. Many of the rate equations have not been published before. The expanded edition of the 2001 title, Kinetics of Homogeneous Multistep Reactions includes new chapters on heterogeneous catalysis and periodic and chaotic re-actions; new sections on adsorption, statistical methods, and lumping; and other new detail. Contains new chapters on heterogeneous catalysis, oscillations and chaos Includes new sections on statistical methods, lumping adsorption and software and databases Provides a better understanding of complex reaction mechanisms
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. Fro over 90 years The Royal Society of chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic, and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
A range of alternative mechanisms can usually be postulated for most organic chemical reactions, and identification of the most likely requires detailed investigation. Investigation of Organic Reactions and their Mechanisms will serve as a guide for the trained chemist who needs to characterise an organic chemical reaction and investigate its mechanism, but who is not an expert in physical organic chemistry. Such an investigation will lead to an understanding of which bonds are broken, which are made, and the order in which these processes happen. This information and knowledge of the associated kinetic and thermodynamic parameters are central to the development of safe, efficient, and profitable industrial chemical processes, and to extending the synthetic utility of new chemical reactions in chemical and pharmaceutical manufacturing, and academic environments. Written as a coherent account of the principal methods currently used in mechanistic investigations, at a level accessible to academic researchers and graduate chemists in industry, the book is highly practical in approach. The contributing authors, an international group of expert practitioners of the techniques covered, illustrate their contributions by examples from their own research and from the relevant wider chemical literature. The book covers basic aspects such as product analysis, kinetics, catalysis, and investigation of reactive intermediates. It also includes material on significant recent developments, e.g. computational chemistry, calorimetry, and electrochemistry, in addition to topics of high current industrial relevance, e.g. reactions in multiphase systems, and synthetically useful reactions involving free radicals and catalysis by organometallic compounds.
In this thesis, attention was paid to several novel oxygenated fuels—carbonates, polyethers and ketones. Combustion kinetic investigations were performed for typical representative compounds, including dimethyl carbonate, diethyl carbonate, cyclopentanone, 3-pentanone, 1,2-dimethoxyethane and dimethoxymethane. For experiments, suitable diagnostic techniques were used to measure the detailed speciation information of the target fuels under different conditions. For kinetic modeling, rate coefficients for crucial elementary reactions were obtained through high-level theoretical calculations. Based on that, validated kinetic models with good predictive performances were developed. On the basis of experimental measurements and model interpretations, this work highlighted two important combustion characteristics regarding the practical use: the pollutant formation and the ignition performance. Besides, the correlation between oxygen-containing functional groups and the aforementioned combustion characteristics was revealed. To reveal the potential interactions between the reaction networks of oxygenated additives and the hydrocarbon base fuels during combustion. Chemical structures of laminar premixed flames fueled by binary fuels were measured, and by changing the initial fuel compositions, the addition effects of the oxygenates on the fuel consumption and pollutant formation behaviors were explored. It was found that complicated chemical interactions do not exist in the reaction networks under the investigated conditions.
This second, extended and updated edition presents the current state of kinetics of chemical reactions, combining basic knowledge with results recently obtained at the frontier of science. Special attention is paid to the problem of the chemical reaction complexity with theoretical and methodological concepts illustrated throughout by numerous examples taken from heterogeneous catalysis combustion and enzyme processes. Of great interest to graduate students in both chemistry and chemical engineering.
A reaction mechanism for the oxidation of ferrous chloride by molecular oxygen is developed, and the appropriate constants are evaluated. The effect of a number of cations and anions on the rate of oxidation has been tested.