Download Free An Introductory Course In Elementary Number Theory Book in PDF and EPUB Free Download. You can read online An Introductory Course In Elementary Number Theory and write the review.

These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory courses in number theory for math majors and in many cases as an elective course. The notes contain a useful introduction to important topics that need to be addressed in a course in number theory. Proofs of basic theorems are presented in an interesting and comprehensive way that can be read and understood even by non-majors with the exception in the last three chapters where a background in analysis, measure theory and abstract algebra is required. The exercises are carefully chosen to broaden the understanding of the concepts. Moreover, these notes shed light on analytic number theory, a subject that is rarely seen or approached by undergraduate students. One of the unique characteristics of these notes is the careful choice of topics and its importance in the theory of numbers. The freedom is given in the last two chapters because of the advanced nature of the topics that are presented.
This book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/
Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.
The book is based on lecture notes of a course 'from elementary number theory to an introduction to matrix theory' given at the Technion to gifted high school students. It is problem based, and covers topics in undergraduate mathematics that can be introduced in high school through solving challenging problems. These topics include Number theory, Set Theory, Group Theory, Matrix Theory, and applications to cryptography and search engines.
This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and more.
An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.
Elementary Number Theory takes an accessible approach to teaching students about the role of number theory in pure mathematics and its important applications to cryptography and other areas. The first chapter of the book explains how to do proofs and includes a brief discussion of lemmas, propositions, theorems, and corollaries. The core of the tex
This textbook covers the main topics in number theory as taught in universities throughout the world. Number theory deals mainly with properties of integers and rational numbers; it is not an organized theory in the usual sense but a vast collection of individual topics and results, with some coherent sub-theories and a long list of unsolved problems. This book excludes topics relying heavily on complex analysis and advanced algebraic number theory. The increased use of computers in number theory is reflected in many sections (with much greater emphasis in this edition). Some results of a more advanced nature are also given, including the Gelfond-Schneider theorem, the prime number theorem, and the Mordell-Weil theorem. The latest work on Fermat's last theorem is also briefly discussed. Each chapter ends with a collection of problems; hints or sketch solutions are given at the end of the book, together with various useful tables.