Download Free An Introduction To X Ray Physics Optics And Applications Book in PDF and EPUB Free Download. You can read online An Introduction To X Ray Physics Optics And Applications and write the review.

In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials.Common aspects of diverse phenomena emphasizedTheoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchersExamples and problems include applications drawn from medicine, astronomy, and materials analysisDetailed solutions are provided for all examples and problems.
The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.
This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.
While books on the medical applications of x-ray imaging exist, there is not one currently available that focuses on industrial applications. Full of color images that show clear spectrometry and rich with applications, X-Ray Imaging fills the need for a comprehensive work on modern industrial x-ray imaging. It reviews the fundamental science of x-ray imaging and addresses equipment and system configuration. Useful to a broad range of radiation imaging practitioners, the book looks at the rapid development and deployment of digital x-ray imaging system.
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
A complete introduction to x-ray microscopy, covering optics, 3D and chemical imaging, lensless imaging, radiation damage, and applications.
Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.
Master the physics and understand the current applications of modern X-ray and EUV sources with this fully updated second edition.