Download Free An Introduction To Water Quality Standards Book in PDF and EPUB Free Download. You can read online An Introduction To Water Quality Standards and write the review.

This volume is of great importance to humans and other living organisms. The study of water quality draws information from a variety of disciplines including chemistry, biology, mathematics, physics, engineering, and resource management. University training in water quality is often limited to specialized courses in engineering, ecology, and fisheries curricula. This book also offers a basic understanding of water quality to professionals who are not formally trained in the subject. The revised third edition updates and expands the discussion, and incorporates additional figures and illustrative problems. Improvements include a new chapter on basic chemistry, a more comprehensive chapter on hydrology, and an updated chapter on regulations and standards. Because it employs only first-year college-level chemistry and very basic physics, the book is well-suited as the foundation for a general introductory course in water quality. It is equally useful as a guide for self-study and an in-depth resource for general readers.
There are sections on drinking water and a concluding chapter entitled "Getting Personal about Clean Water" about citizen involvement at home and in the community."--BOOK JACKET.
This volume describes the methods used in the surveillance of drinking water quality in the light of the special problems of small-community supplies, particularly in developing countries, and outlines the strategies necessary to ensure that surveillance is effective.
Environmental problems in coastal ecosystems can sometimes be attributed to excess nutrients flowing from upstream watersheds into estuarine settings. This nutrient over-enrichment can result in toxic algal blooms, shellfish poisoning, coral reef destruction, and other harmful outcomes. All U.S. coasts show signs of nutrient over-enrichment, and scientists predict worsening problems in the years ahead. Clean Coastal Waters explains technical aspects of nutrient over-enrichment and proposes both immediate local action by coastal managers and a longer-term national strategy incorporating policy design, classification of affected sites, law and regulation, coordination, and communication. Highlighting the Gulf of Mexico's "Dead Zone," the Pfiesteria outbreak in a tributary of Chesapeake Bay, and other cases, the book explains how nutrients work in the environment, why nitrogen is important, how enrichment turns into over-enrichment, and why some environments are especially susceptible. Economic as well as ecological impacts are examined. In addressing abatement strategies, the committee discusses the importance of monitoring sites, developing useful models of over-enrichment, and setting water quality goals. The book also reviews voluntary programs, mandatory controls, tax incentives, and other policy options for reducing the flow of nutrients from agricultural operations and other sources.
Use of coastal, estuarine and freshwater recreational environments has significant benefits for health and well-being, including rest, relaxation, exercise, cultural and religious practices, and aesthetic pleasure, while also providing substantial local, regional and national economic benefits. These guidelines focus on water quality management for coastal and freshwater environments to protect public health. The guidelines: 1. describe the current state of knowledge about the possible adverse health impacts of various forms of water pollution; and2. set out recommendations for setting national health-based targets, conducting surveillance and risk assessments, putting in place systems to monitor and control risks, and providing timely advice to users on water safety.These guidelines are aimed at national and local authorities, and other entities with an obligation to exercise due diligence relating to the safety of recreational water sites. They may be implemented in conjunction with other measures for water safety (such as drowning prevention and sun exposure) and measures for environmental protection of recreational water use sites.
This textbook provides a comprehensive review of the problems associated with the supply of drinking water in the developed world. Since the first edition of this book was published, water companies and regulators have been presented with numerous new challenges - global warming has seriously affected water supplies and water quality; advances in chemical and microbial analysis have revealed many new contaminants in water that were previously undetectable; and recent terrorist attacks have demonstrated how vulnerable water supplies are to contamination or disruption. This new edition includes an overview of the current and emerging problems, with potential solutions. It has been completely updated, and includes the WHO Revised Drinking Water Guidelines. An ideal textbook for courses in environmental science, hydrology, environmental health and environmental engineering; it also provides an authoritative reference for practitioners and professionals in the water supply industry.
Introductory technical guidance for civil engineers and other professional engineers interested in water quality standards. Here is what is discussed: 1. INTRODUCTION, 2. STREAM WATER QUALITY STANDARDS, 3. WATER QUALITY FOR SPECIFIC BENEFICIAL USES, 4. DOMESTIC WATER SUPPLY, 5. INDUSTRIAL, 6. WATER RECREATION, 7. AQUATIC LIFE, 8. INORGANIC AND ORGANIC PARAMETERS, 9. SAMPLING PLAN TO OBTAIN CREDIBLE WATER QUALITY DATA.
The Mississippi River is, in many ways, the nation's best known and most important river system. Mississippi River water quality is of paramount importance for sustaining the many uses of the river including drinking water, recreational and commercial activities, and support for the river's ecosystems and the environmental goods and services they provide. The Clean Water Act, passed by Congress in 1972, is the cornerstone of surface water quality protection in the United States, employing regulatory and nonregulatory measures designed to reduce direct pollutant discharges into waterways. The Clean Water Act has reduced much pollution in the Mississippi River from "point sources" such as industries and water treatment plants, but problems stemming from urban runoff, agriculture, and other "non-point sources" have proven more difficult to address. This book concludes that too little coordination among the 10 states along the river has left the Mississippi River an "orphan" from a water quality monitoring and assessment perspective. Stronger leadership from the U.S. Environmental Protection Agency (EPA) is needed to address these problems. Specifically, the EPA should establish a water quality data-sharing system for the length of the river, and work with the states to establish and achieve water quality standards. The Mississippi River corridor states also should be more proactive and cooperative in their water quality programs. For this effort, the EPA and the Mississippi River states should draw upon the lengthy experience of federal-interstate cooperation in managing water quality in the Chesapeake Bay.
The efficient and profitable production of fish, crustaceans, and other aquatic organisms in aquaculture depends on a suitable environment in which they can reproduce and grow. Because those organisms live in water, the major environ mental concern within the culture system is water quality. Water supplies for aquaculture systems may naturally be oflow quality or polluted by human activity, but in most instances, the primary reason for water quality impairment is the culture activity itself. Manures, fertilizers, and feeds applied to ponds to enhance production only can be partially converted to animal biomass. Thus, at moderate and high production levels, the inputs of nutrients and organic matter to culture units may exceed the assimilative capacity of the ecosystems. The result is deteriorating water quality which stresses the culture species, and stress leads to poor growth, greater incidence of disease, increased mortality, and low produc tion. Effluents from aquaculture systems can cause pollution of receiving waters, and pollution entering ponds in source water or chemicals added to ponds for management purposes can contaminate aquacultural products. Thus, water quality in aquaculture extends into the arenas of environmental protection and food quality and safety. A considerable body of literature on water quality management in aquaculture has been accumulated over the past 50 years. The first attempt to compile this information was a small book entitled Water Quality in Warmwater Fish Ponds (Boyd I 979a).