Download Free An Introduction To The Theory Of Superfluidity Tr Book in PDF and EPUB Free Download. You can read online An Introduction To The Theory Of Superfluidity Tr and write the review.

This book covers main properties of the excitation spectrum in superfluid 4He and the thermodynamics determined by the spectrum. It deals with hydrodynamics and describes that quantitative results should be insignificantly modified with processes of phonon decay taken into account.
Superfluidity – and closely related to it, superconductivity – are very general phenomena that can occur on vastly different energy scales. Their underlying theoretical mechanism of spontaneous symmetry breaking is even more general and applies to a multitude of physical systems. In these lecture notes, a pedagogical introduction to the field-theory approach to superfluidity is presented. The connection to more traditional approaches, often formulated in a different language, is carefully explained in order to provide a consistent picture that is useful for students and researchers in all fields of physics. After introducing the basic concepts, such as the two-fluid model and the Goldstone mode, selected topics of current research are addressed, such as the BCS-BEC crossover and Cooper pairing with mismatched Fermi momenta.
This volume gives an up-to-date, systematic account of the microscopic theory of Bose-condensed fluids developed since the late 1950s. In contrast to the usual phenomenological discussions of superfluid 4He, the present treatment is built on the pivotal role of the Bose broken symmetry and a Bose condensate. The many-body formalism is developed, with emphasis on the one- and two-particle Green's functions and their relation to the density response function. These are all coupled together by the Bose broken symmetry, which provides the basis for understanding the elementary excitations and response functions in the hydrodynamic and collisionless regions. It also explains the difference between excitations in the superfluid and normal phases. Chapter 4 gives the first critical assessment of the experimental evidence for a Bose condensate in liquid 4He, based on high-momentum neutron scattering data.
The authors introduce the full content of the Microscopic Theory of Superfluid He II, developed since 1998; also given are brief accounts of the application of one concept from the theory, the QCE1 Superfluidity Mechanism, to superconductors. One peer review report writes: "The authors include more of the underlying physics than some earlier theories, and the comparisons they make with experimental data are satisfactory". The Microscopic Theory of Superfluid He II has several important features, which distinguishes this theory from the previous theories of He II. The immense volume of information the authors have today, especially the pieces of information revealing the microscopic dynamics of the system, was not available to the developers of the previous theories in the 1930s-1940s. This book also demonstrates how the general principles of quantum mechanics and condensed matter physics can be consistently applied to a given system with confidence, once a realistic microscopic model is derived for it. It demonstrates in turn the validity of the general physics principles in such an extreme system as the quantum fluid He II.
Methods of Statistical Physics is an exposition of the tools of statistical mechanics, which evaluates the kinetic equations of classical and quantized systems. The book also analyzes the equations of macroscopic physics, such as the equations of hydrodynamics for normal and superfluid liquids and macroscopic electrodynamics. The text gives particular attention to the study of quantum systems. This study begins with a discussion of problems of quantum statistics with a detailed description of the basics of quantum mechanics along with the theory of measurement. An analysis of the asymptotic behavior of universal quantities is also explained. Strong consideration is given to the systems with spontaneously broken system. Theories such as the kinetic theory of gases, the theory of Brownian motion, the theory of the slowing down of neutrons, and the theory of transport phenomena in crystals are discussed. The book will be a useful tool for physicists, mathematicians, students, and researchers in the field of statistical mechanics.
A handbook for librarians and students.
Ultracold atomic gases is a rapidly developing field of physics that attracts many young researchers around the world. This book gives a comprehensive overview of exciting developments in Bose-Einstein condensation and superfluidity from a theoretical perspective and makes sense of key experiments with a special focus on ultracold atomic gases.
Although first proposed by Einstein in 1924, Bose-Einstein condensation (BEC) in a gas was not achieved until 1995 when, using a combination of laser cooling and trapping, and magnetic trapping and evaporation, it was first observed in rubidium and then in lithium and sodium, cooled down to extremely low temperatures. This book brought together many leaders in both theory and experiment on Bose-Einstein condensation in gases. Their lectures provided a detailed coverage of the experimental techniques for the creation and study of BEC, as well as the theoretical foundation for understanding the properties of this novel system. This volume provides the first systematic review of the field and the many developments that have taken place in the past three years.