Download Free An Introduction To The Mechanical Properties Of Solid Polymers Book in PDF and EPUB Free Download. You can read online An Introduction To The Mechanical Properties Of Solid Polymers and write the review.

Provides a comprehensive introduction to the mechanical behaviour of solid polymers. Extensively revised and updated throughout, the second edition now includes new material on mechanical relaxations and anisotropy, composites modelling, non-linear viscoelasticity, yield behaviour and fracture of tough polymers. The accessible approach of the book has been retained with each chapter designed to be self contained and the theory and applications of the subject carefully introduced where appropriate. The latest developments in the field are included alongside worked examples, mathematical appendices and an extensive reference. Fully revised and updated throughout to include all the latest developments in the field Worked examples at the end of the chapter An invaluable resource for students of materials science, chemistry, physics or engineering studying polymer science
Provides a comprehensive introduction to the mechanical behaviour of solid polymers. Extensively revised and updated throughout, the second edition now includes new material on mechanical relaxations and anisotropy, composites modelling, non-linear viscoelasticity, yield behaviour and fracture of tough polymers. The accessible approach of the book has been retained with each chapter designed to be self contained and the theory and applications of the subject carefully introduced where appropriate. The latest developments in the field are included alongside worked examples, mathematical appendices and an extensive reference. * Fully revised and updated throughout to include all the latest developments in the field * Worked examples at the end of the chapter * An invaluable resource for students of materials science, chemistry, physics or engineering studying polymer science
Providing an updated and comprehensive account of the properties of solid polymers, the book covers all aspects of mechanical behaviour. This includes finite elastic behavior, linear viscoelasticity and mechanical relaxations, mechanical anisotropy, non-linear viscoelasicity, yield behavior and fracture. New to this edition is coverage of polymer nanocomposites, and molecular interpretations of yield, e.g. Bowden, Young, and Argon. The book begins by focusing on the structure of polymers, including their chemical composition and physical structure. It goes on to discuss the mechanical properties and behaviour of polymers, the statistical molecular theories of the rubber-like state and describes aspects of linear viscoelastic behaviour, its measurement, and experimental studies. Later chapters cover composites and experimental behaviour, relaxation transitions, stress and yielding. The book concludes with a discussion of breaking phenomena.
Providing an updated and comprehensive account of the propertiesof solid polymers, the book covers all aspects of mechanicalbehaviour. This includes finite elastic behavior, linearviscoelasticity and mechanical relaxations, mechanical anisotropy,non-linear viscoelasicity, yield behavior and fracture. New to thisedition is coverage of polymer nanocomposites, and molecularinterpretations of yield, e.g. Bowden, Young, and Argon. The book begins by focusing on the structure of polymers,including their chemical composition and physical structure. It goes on to discuss the mechanical properties and behaviour ofpolymers, the statistical molecular theories of the rubber-likestate and describes aspects of linear viscoelastic behaviour, itsmeasurement, and experimental studies. Later chapters cover composites and experimental behaviour,relaxation transitions, stress and yielding. The book concludeswith a discussion of breaking phenomena.
A concise, self-contained introduction to solid polymers, the mechanics of their behavior and molecular and structural interpretations. This updated edition provides extended coverage of recent developments in rubber elasticity, relaxation transitions, non-linear viscoelastic behavior, anisotropic mechanical behavior, yield behavior of polymers, breaking phenomena, and other fields.
Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions summarizes the latest developments regarding polymers, their properties in relation to chemical structure, and methods for estimating and predicting numerical properties from chemical structure. In particular, it examines polymer electrical properties, magnetic properties, and mechanical properties, as well as their crystallization and environmental behavior and failure. The rheological properties of polymer melts and polymer solutions are also considered. Organized into seven parts encompassing 27 chapters, this book begins with an overview of polymer science and engineering, including the typology of polymers and their properties. It then turns to a discussion of thermophysical properties, from transition temperatures to volumetric and calorimetric properties, along with the cohesive aspects and conformation statistics. It also introduces the reader to the behavior of polymers in electromagnetic and mechanical fields of force. The book covers the quantities that influence the transport of heat, momentum, and matter, particularly heat conductivity, viscosity, and diffusivity; properties that control the chemical stability and breakdown of polymers; and polymer properties as an integral concept, with emphasis on processing and product properties. Readers will find tables that give valuable (numerical) data on polymers and include a survey of the group contributions (increments) of almost every additive function considered. This book is a valuable resource for anyone working on practical problems in the field of polymers, including organic chemists, chemical engineers, polymer processers, polymer technologists, and both graduate and PhD students.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification · The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers
Publisher Description
This book discusses polymers from a mechanical engineering perspective, treating stresses and deformations in polymeric structural components.