Download Free An Introduction To The Laplace Transform And The Z Transform Book in PDF and EPUB Free Download. You can read online An Introduction To The Laplace Transform And The Z Transform and write the review.

The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications.
This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.
This is one of the books in a series designed to provide engineering students in colleges and universities with a mathematical toolkit. In the United Kingdom, it is aimed primarily at HNC/HND students and first year undergraduates. Thus the mathematics assumed is that in BTEC National Certificates and Diplomas or in A-level.
Z-Transform is one of several transforms that are essential ? mathematical tools used in engineering and applied sciences. This ? short edition of this note is written to provide an introduction to the ? subject of Z-Transform. The material presented in this note can be ? covered in four to five 2-hour classroom lectures. Basic knowledge of ? calculus is needed. The note is not intended as a substitute for a text ? book on the subject. It is intended to help readers and students in ? engineering, mathematics and applied sciences understand the basic properties of Z-? Transform and some of the methods and techniques based on this ? transform to solve some engineering and science problems.? I have collected many examples and problems on the subject ? that might help the reader getting on-hand experience with the ? techniques presented in this note.?
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.
The book is written for an undergraduate course on the Signals and Systems. It provides comprehensive explanation of continuous time signals and systems , analogous systems, Fourier transform, Laplace transform, state variable analysis and z-transform analysis of systems. The book starts with the various types of signals and operations on signals. It explains the classification of continuous time signals and systems. Then it includes the discussion of analogous systems. The book provides detailed discussion of Fourier transform representation, properties of Fourier transform and its applications to network analysis. The book also covers the Laplace transform, its properties and network analysis using Laplace transform with and without initial conditions. The book provides the detailed explanation of modern approach of system analysis called the state variable analysis. It includes various methods of state space representation of systems, finding the state transition matrix and solution of state equation. The discussion of network topology is also included in the book. The chapter on z-transform includes the properties of ROC, properties of z-transform, inverse z-transform, z-transform analysis of LTI systems and pulse transfer function. The state space representation of discrete systems is also incorporated in the book. The book uses plain, simple and lucid language to explain each topic. The book provides the logical method of explaining the various complicated topics and stepwise methods to make the understanding easy. The variety of solved examples is the feature of this book. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting.
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.
"Provides rigorous treatment of deterministic and random signals"--