Download Free An Introduction To Solute Transport In Heterogeneous Geologic Media Book in PDF and EPUB Free Download. You can read online An Introduction To Solute Transport In Heterogeneous Geologic Media and write the review.

This book provides a unified and comprehensive overview of physical explanations of the stochastic concepts of solute transport processes, important scaling issues, and practical tools for the analysis of solute transport.
Over the past several decades, analyses of solute migration in aquifers have widely adopted the classical advection-dispersion equation. However, misunderstandings over advection-dispersion concepts, their relationship with the scales of heterogeneity, our observation and interest, and their ensemble mean nature have created furious debates about the concepts' validity. This book provides a unified and comprehensive overview and lucid explanations of the stochastic nature of solute transport processes at different scales. It also presents tools for analyzing solute transport and its uncertainty to meet our needs at different scales. Easy-to-understand physical explanations without complex mathematics make this book an invaluable resource for students, researchers, and professionals performing groundwater quality evaluations, management, and remediation.
This textbook integrates classic principles of flow through porous media with recently developed stochastic analyses to provide new insight on subsurface hydrology. Importantly, each of the authors has extensive experience in both academia and the world of applied groundwater hydrology. The book not only presents theories but also emphasizes their underlying assumptions, limitations, and the potential pitfalls that may occur as a result of blind application of the theories as 'cookie-cutter' solutions. The book has been developed for advanced-level courses on groundwater fluid flow, hydraulics, and hydrogeology, in either civil and environmental engineering or geoscience departments. It is also a valuable reference text for researchers and professionals in civil and environmental engineering, geology, soil science, environmental science, and petroleum and mining engineering.
This book is a printed edition of the Special Issue "Groundwater Contamination and Remediation" that was published in Water
Arid and semi-arid regions face major challenges in the management of scarce freshwater resources under pressures of population, economic development, climate change, pollution and over-abstraction. Groundwater is commonly the most important water resource in these areas. Groundwater models are widely used globally to understand groundwater systems and to guide decisions on management. However, the hydrology of arid and semi-arid areas is very different from that of humid regions, and there is little guidance on the special challenges of groundwater modelling for these areas. This book brings together the experience of internationally leading experts to fill a gap in the scientific and technical literature. It introduces state-of-the-art methods for modelling groundwater resources, illustrated with a wide-ranging set of illustrative examples from around the world. The book is valuable for researchers, practitioners in developed and developing countries, and graduate students in hydrology, hydrogeology, water resources management, environmental engineering and geography.
Engineers and applied geophysicists routinely encounter interpolation and estimation problems when analysing data from field observations. Introduction to Geostatistics presents practical techniques for the estimation of spatial functions from sparse data. The author's unique approach is a synthesis of classic and geostatistical methods with a focus on the most practical linear minimum-variance estimation methods, and includes suggestions on how to test and extend the applicability of such methods. The author includes many useful methods (often not covered in other geostatistics books) such as estimating variogram parameters, evaluating the need for a variable mean, parameter estimation and model testing in complex cases (e.g. anisotropy, variable mean, and multiple variables), and using information from deterministic mathematical models. Well illustrated with exercises and worked examples taken from hydrogeology, Introduction to Geostatistics assumes no background in statistics and is suitable for graduate-level courses in earth sciences, hydrology, and environmental engineering, and also for self-study.
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
"Coupled Processes in Subsurface Deformation, Flow, and Transport presents a rational and unified treatment of coupled processes, with emphasis on the coupling and feedbacks present where solid deformation, fluid flow, and solute transport combine, and in the representation of heterogeneous media through multi-porosity approaches. Analytical and numerical solutions are presented for subsurface systems subjected to varying mechanical, thermal, and chemical disturbances."--BOOK JACKET.
Tremendous progress has been made in the field of remediation technologies since the second edition of Contaminant Hydrogeology was published two decades ago, and its content is more important than ever. Recognizing the extensive advancement and research taking place around the world, the authors have embraced and worked from a larger global perspective. Boving and Kreamer incorporate environmental innovation in studying and treating groundwater/soil contamination and the transport of those contaminants while building on Fetter’s original foundational work. Thoroughly updated, expanded, and reorganized, the new edition presents a wealth of new material, including new discussions of emerging and potential contaminant sources and their characteristics like deep well injection, fracking fluids, and in situ leach mining. New sections cover BET and Polanyi adsorption potential theory, vapor transport theory, the introduction of the Capillary and Bond Numbers, the partitioning interwell tracer testing technique for investigating NAPL sites, aerial photographic interpretation, geophysics, immunological surveys, high resolution vertical sampling, flexible liner systems, groundwater tracers, and much more. Contaminant Hydrogeology is intended as a textbook in upper level courses in mass transport and contaminant hydrogeology, and remains a valuable resource for professionals in both the public and private sectors.