Download Free An Introduction To Slope Stability And Protection Book in PDF and EPUB Free Download. You can read online An Introduction To Slope Stability And Protection and write the review.

Introductory technical guidance for civil and geotechnical engineers interested in slope stability and protection. Here is what is discussed: 1. INTRODUCTION 2. TYPES OF FAILURES 3. METHODS OF ANALYSIS 4. TRANSLATIONAL FAILURE ANALYSIS 5. REQUIRED SAFETY FACTORS 6. EARTHQUAKE LOADING 7. EFFECTS OF SOIL PARAMETERS AND GROUNDWATER ON STABILITY 8. BIBLIOGRAPHY 9. GLOSSARY 10. SYMBOLS.
The definitive guide to the critical issue of slope stability and safety Soil Strength and Slope Stability, Second Edition presents the latest thinking and techniques in the assessment of natural and man-made slopes, and the factors that cause them to survive or crumble. Using clear, concise language and practical examples, the book explains the practical aspects of geotechnical engineering as applied to slopes and embankments. The new second edition includes a thorough discussion on the use of analysis software, providing the background to understand what the software is doing, along with several methods of manual analysis that allow readers to verify software results. The book also includes a new case study about Hurricane Katrina failures at 17th Street and London Avenue Canal, plus additional case studies that frame the principles and techniques described. Slope stability is a critical element of geotechnical engineering, involved in virtually every civil engineering project, especially highway development. Soil Strength and Slope Stability fills the gap in industry literature by providing practical information on the subject without including extraneous theory that may distract from the application. This balanced approach provides clear guidance for professionals in the field, while remaining comprehensive enough for use as a graduate-level text. Topics include: Mechanics of soil and limit equilibrium procedures Analyzing slope stability, rapid drawdown, and partial consolidation Safety, reliability, and stability analyses Reinforced slopes, stabilization, and repair The book also describes examples and causes of slope failure and stability conditions for analysis, and includes an appendix of slope stability charts. Given how vital slope stability is to public safety, a comprehensive resource for analysis and practical action is a valuable tool. Soil Strength and Slope Stability is the definitive guide to the subject, proving useful both in the classroom and in the field.
This book is aimed at the practising engineer and engineering geologist working in tropical environments, where lands lides are mainly triggered by rain fall. This book is based on a similar work published in 1999 in Portuguese, which became the Rio de Janeiro Slope Manual. This book is an engineering guide for the design of slopes and stabilisation works in rocks and residual soils. It evolves from the cumulative experience gathered by several engineers and geologists who faced severe slope problems. The authors' experience throughout Central and South America (Costa Rica, Argentina, Bolivia, Peru, Ecuador and Venezuela) and the Far East, especially Hong Kong and Malaysia, was used as a foundation for writing this book. The work also benefits enormously from the time spent in Hong Kong in 1996 and 1997 by the first editor on sabbatical at the City University of Hong Kong, and the discussions he had with many colleagues from the Geotechnical Engineering Office (GEO) of the Hong Kong Government, especially Dr. A. Malone, Mr. w.K. Pun, Dr. A. Li, Mr. K. Ho, and Mr. y.c. Chan among others.
A major revision of the comprehensive text/reference Written by world-leading geotechnical engineers who share almost 100 years of combined experience, Slope Stability and Stabilization, Second Edition assembles the background information, theory, analytical methods, design and construction approaches, and practical examples necessary to carry out a complete slope stability project. Retaining the best features of the previous edition, this new book has been completely updated to address the latest trends and methodology in the field. Features include: All-new chapters on shallow failures and stability of landfill slopes New material on probabilistic stability analysis, cost analysis of stabilization alternatives, and state-of-the-art techniques in time-domain reflectometry to help engineers plan and model new designs Tested and FHA-approved procedures for the geotechnical stage of highway, tunnel, and bridge projects Sound guidance for geotechnical stage design and planning for virtually all types of construction projects Slope Stability and Stabilization, Second Edition is filled with current and comprehensive information, making it one of the best resources available on the subject-and an essential reference for today's and tomorrow's professionals in geology, geotechnical engineering, soil science, and landscape architecture.
This book aims to assist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. The book reviews the types of problematic slopes that may occur and describes briefly the nature of mass movements and the causes of these movements. There is focus on the use of vegetation to stabilize soil on slopes prone to mass movements. The book also introduces new ecotechnological methods, and case studies are discussed.
The "Red Book" presents a background to conventional foundation analysis and design. The text is not intended to replace the much more comprehensive 'standard' textbooks, but rather to support and augment these in a few important areas, supplying methods applicable to practical cases handled daily by practising engineers and providing the basic soil mechanics background to those methods. It concentrates on the static design for stationary foundation conditions. Although the topic is far from exhaustively treated, it does intend to present most of the basic material needed for a practising engineer involved in routine geotechnical design, as well as provide the tools for an engineering student to approach and solve common geotechnical design problems.
Introductory technical guidance for civil and geotechnical engineers interested in slope stability analysis. Here is what is discussed: 1. GENERAL 2. SLOPE STABILITY PROBLEMS 3. SLOPES IN SOILS PRESENTING SPECIAL PROBLEMS 4. SLOPE STABILITY CHARTS 5. DETAILED ANALYSES OF SLOPE STABILITY 6. STABILIZATION OF SLOPES.
Freshly updated and extended version of Slope Analysis (Chowdhury, Elsevier, 1978). This reference book gives a complete overview of the developments in slope engineering in the last 30 years. Its multi-disciplinary, critical approach and the chapters devoted to seismic effects and probabilistic approaches and reliability analyses, reflect the distinctive style of the original. Subjects discussed are: the understanding of slope performance, mechanisms of instability, requirements for modeling and analysis, and new techniques for observation and modeling. Special attention is paid to the relation with the increasing frequency and consequences of natural and man-made hazards. Strategies and methods for assessing landslide susceptibility, hazard and risk are also explored. Moreover, the relevance of geotechnical analysis of slopes in the context of climate change scenarios is discussed. All theory is supported by numerous examples. ''...A wonderful book on Slope Stability....recommended as a refernence book to those who are associated with the geotechnical engineering profession (undergraduates, post graduates and consulting engineers)...'' Prof. Devendra Narain Singh, Indian Inst. of Technology, Mumbai, India ''I have yet to see a book that excels the range and depth of Geotechnical Slope Analysis... I have failed to find a topic which is not covered and that makes the book almost a single window outlet for the whole range of readership from students to experts and from theoreticians to practicing engineers...'' Prof. R.K. Bhandari, New Delhi, India
This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).
Guidelines for Open Pit Slope Design is a comprehensive account of the open pit slope design process. Created as an outcome of the Large Open Pit (LOP) project, an international research and technology transfer project on rock slope stability in open pit mines, this book provides an up-to-date compendium of knowledge of the slope design processes that should be followed and the tools that are available to aid slope design practitioners. This book links innovative mining geomechanics research into the strength of closely jointed rock masses with the most recent advances in numerical modelling, creating more effective ways for predicting rock slope stability and reliability in open pit mines. It sets out the key elements of slope design, the required levels of effort and the acceptance criteria that are needed to satisfy best practice with respect to pit slope investigation, design, implementation and performance monitoring. Guidelines for Open Pit Slope Design comprises 14 chapters that directly follow the life of mine sequence from project commencement through to closure. It includes: information on gathering all of the field data that is required to create a 3D model of the geotechnical conditions at a mine site; how data is collated and used to design the walls of the open pit; how the design is implemented; up-to-date procedures for wall control and performance assessment, including limits blasting, scaling, slope support and slope monitoring; and how formal risk management procedures can be applied to each stage of the process. This book will assist in meeting stakeholder requirements for pit slopes that are stable, in regards to safety, ore recovery and financial return, for the required life of the mine.