Download Free An Introduction To Scientific Computing With Matlabr And Python Tutorials Book in PDF and EPUB Free Download. You can read online An Introduction To Scientific Computing With Matlabr And Python Tutorials and write the review.

This textbook is written for the first introductory course on scientific computing. It covers elementary numerical methods for linear systems, root finding, interpolation, numerical integration, numerical differentiation, least squares problems, initial value problems and boundary value problems. It includes short Matlab and Python tutorials to quickly get students started on programming. It makes the connection between elementary numerical methods with advanced topics such as machine learning and parallel computing. This textbook gives a comprehensive and in-depth treatment of elementary numerical methods. It balances the development, implementation, analysis and application of a fundamental numerical method by addressing the following questions. •Where is the method applied? •How is the method developed? •How is the method implemented? •How well does the method work? The material in the textbook is made as self-contained and easy-to-follow as possible with reviews and remarks. The writing is kept concise and precise. Examples, figures, paper-and-pen exercises and programming problems are deigned to reinforce understanding of numerical methods and problem-solving skills.
This textbook is written for the first introductory course on scientific computing. It covers elementary numerical methods for linear systems, root finding, interpolation, numerical integration, numerical differentiation, least squares problems, initial value problems and boundary value problems. It includes short Matlab and Python tutorials to quickly get students started on programming. It makes the connection between elementary numerical methods with advanced topics such as machine learning and parallel computing. This textbook gives a comprehensive and in-depth treatment of elementary numerical methods. It balances the development, implementation, analysis and application of a fundamental numerical method by addressing the following questions. *Where is the method applied? *How is the method developed? *How is the method implemented? *How well does the method work? The material in the textbook is made as self-contained and easy-to-follow as possible with reviews and remarks. The writing is kept concise and precise. Examples, figures, paper-and-pen exercises and programming problems are deigned to reinforce understanding of numerical methods and problem-solving skills.
This textbook is written for the first introductory course on scientific computing. It covers elementary numerical methods for linear systems, root finding, interpolation, numerical integration, numerical differentiation, least squares problems, initial value problems and boundary value problems. It includes short Matlab and Python tutorials to quickly get students started on programming. It makes the connection between elementary numerical methods with advanced topics such as machine learning and parallel computing. This textbook gives a comprehensive and in-depth treatment of elementary numerical methods. It balances the development, implementation, analysis and application of a fundamental numerical method by addressing the following questions. •Where is the method applied? •How is the method developed? •How is the method implemented? •How well does the method work? The material in the textbook is made as self-contained and easy-to-follow as possible with reviews and remarks. The writing is kept concise and precise. Examples, figures, paper-and-pen exercises and programming problems are deigned to reinforce understanding of numerical methods and problem-solving skills.
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Scientific Computation has established itself as a stand-alone area of knowledge at the borderline between computer science and applied mathematics. Nonetheless, its interdisciplinary character cannot be denied: its methodologies are increasingly used in a wide variety of branches of science and engineering. A Gentle Introduction to Scientific Computing intends to serve a very broad audience of college students across a variety of disciplines. It aims to expose its readers to some of the basic tools and techniques used in computational science, with a view to helping them understand what happens "behind the scenes" when simple tools such as solving equations, plotting and interpolation are used. To make the book as practical as possible, the authors explore their subject both from a theoretical, mathematical perspective and from an implementation-driven, programming perspective. Features Middle-ground approach between theory and implementation. Suitable reading for a broad range of students in STEM disciplines. Could be used as the primary text for a first course in scientific computing. Introduces mathematics majors, without any prior computer science exposure, to numerical methods. All mathematical knowledge needed beyond Calculus (together with the most widely used Calculus notation and concepts) is introduced in the text to make it self-contained. The erratum document for A Gentle Introduction to Scientific Computing can be accessed here.
This book introduces the reader to many of the problems of scientific computing and the wide variety of methods used for their solutions. It discusses basic approaches and stimulates an appreciation of the need for numerical methods in solving different types of problems. For each of the problems presented, the author provides some mathematical justification and examples. These serve as practical evidence and motivation for the reader to follow. Practical justification of the methods is provided through computer examples and exercises. The book includes an introduction to MATLAB, but the code used is not intended to exemplify sophisticated or robust pieces of software; it is purely illustrative of the method under discussion.
Unique in content and approach, this book covers all the topics that are usually covered in an introduction to scientific computing--but folds in graphics and matrix-vector manipulation in a way that gets readers to appreciate the "connection" between continuous mathematics and computing. "MATLAB 5" is used "throughout" to encourage experimentation, and each chapter focuses on a different important theorem--allowing readers to appreciate the rigorous side of scientific computing. In addition to standard topical coverage, each chapter includes 1) a sketch of a "hard" problem that involves ill-conditioning, high dimension, etc.; 2)at least one theorem with both a rigorous proof and a "proof by MATLAB" experiment to bolster intuition; 3)at least one recursive algorithm; and 4)at least one connection to a real-world application. The book revolves around examples that are packaged in 200+ M-files, which, collectively, communicate all the key mathematical ideas and an appreciation for the subtleties of numerical computing. Power Tools of the Trade. Polynomial Interpolation. Piecewise Polynomial Interpolation. Numerical Integration. Matrix Computations. Linear Systems. The QR and Cholesky Factorizations. Nonlinear Equations and Optimization. The Initial Value Problem. For engineers and mathematicians.
Practical Numerical and Scientific Computing with MATLAB® and Python concentrates on the practical aspects of numerical analysis and linear and non-linear programming. It discusses the methods for solving different types of mathematical problems using MATLAB and Python. Although the book focuses on the approximation problem rather than on error analysis of mathematical problems, it provides practical ways to calculate errors. The book is divided into three parts, covering topics in numerical linear algebra, methods of interpolation, numerical differentiation and integration, solutions of differential equations, linear and non-linear programming problems, and optimal control problems. This book has the following advantages: It adopts the programming languages, MATLAB and Python, which are widely used among academics, scientists, and engineers, for ease of use and contain many libraries covering many scientific and engineering fields. It contains topics that are rarely found in other numerical analysis books, such as ill-conditioned linear systems and methods of regularization to stabilize their solutions, nonstandard finite differences methods for solutions of ordinary differential equations, and the computations of the optimal controls. It provides a practical explanation of how to apply these topics using MATLAB and Python. It discusses software libraries to solve mathematical problems, such as software Gekko, pulp, and pyomo. These libraries use Python for solutions to differential equations and static and dynamic optimization problems. Most programs in the book can be applied in versions prior to MATLAB 2017b and Python 3.7.4 without the need to modify these programs. This book is aimed at newcomers and middle-level students, as well as members of the scientific community who are interested in solving math problems using MATLAB or Python.
This book demonstrates scientific computing by presenting twelve computational projects in several disciplines including Fluid Mechanics, Thermal Science, Computer Aided Design, Signal Processing and more. Each follows typical steps of scientific computing, from physical and mathematical description, to numerical formulation and programming and critical discussion of results. The text teaches practical methods not usually available in basic textbooks: numerical checking of accuracy, choice of boundary conditions, effective solving of linear systems, comparison to exact solutions and more. The final section of each project contains the solutions to proposed exercises and guides the reader in using the MATLAB scripts available online.
This textbook is an introduction to Scientific Computing, in which several numerical methods for the computer solution of certain classes of mathematical problems are illustrated. The authors show how to compute the zeros or the integrals of continuous functions, solve linear systems, approximate functions by polynomials and construct accurate approximations for the solution of differential equations. To make the presentation concrete and appealing, the programming environment Matlab is adopted as a faithful companion.