Download Free An Introduction To Relativity Book in PDF and EPUB Free Download. You can read online An Introduction To Relativity and write the review.

General relativity is now an essential part of undergraduate and graduate courses in physics, astrophysics and applied mathematics. This simple, user-friendly introduction to relativity is ideal for a first course in the subject. Beginning with a comprehensive but simple review of special relativity, the book creates a framework from which to launch the ideas of general relativity. After describing the basic theory, it moves on to describe important applications to astrophysics, black hole physics, and cosmology. Several worked examples, and numerous figures and images, help students appreciate the underlying concepts. There are also 180 exercises which test and develop students' understanding of the subject. The textbook presents all the necessary information and discussion for an elementary approach to relativity. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521735612.
Introduction to Relativity is intended to teach physics and astronomy majors at the freshman, sophomore or upper-division levels how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity", everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Simplicity: the book teaches space and time in relativity in a physical fashion with minimal mathematics - Conciseness: the book teaches relativity by emphasizing the basic simplicity of the principles at work - Visualization: space-time diagrams (Minkowski) illustrate phenomena from simultaneity to the resolution of the twin paradox in a concrete fashion - Worked problems: two chapters of challenging problems solved in several ways illustrate and teach the principles - Problem sets: each chapter is accompanied by a full set of problems for the student that teach the principles and some new phenonmena
Best-selling, accessible physics-first introduction to GR uses minimal new mathematics and begins with the essential physical applications.
Publisher Description
By the year 1900, most of physics seemed to be encompassed in the two great theories of Newtonian mechanics and Maxwell's theory of electromagnetism. Unfortunately, there were inconsistencies between the two theories that seemed irreconcilable. Although many physicists struggled with the problem, it took the genius of Einstein to see that the inconsistencies were concerned not merely with mechanics and electromagnetism, but with our most elementary ideas of space and time. In the special theory of relativity, Einstein resolved these difficulties and profoundly altered our conception of the physical universe. Readers looking for a concise, well-written explanation of one of the most important theories in modern physics need search no further than this lucid undergraduate-level text. Replete with examples that make it especially suitable for self-study, the book assumes only a knowledge of algebra. Topics include classical relativity and the relativity postulate, time dilation, the twin paradox, momentum and energy, particles of zero mass, electric and magnetic fields and forces, and more.
This excellent textbook offers a unique take on relativity theory, setting it in its historical context. Ideal for those interested in relativity and the history of physics, the book contains a complete account of special relativity that begins with the historical analysis of the reasons that led to a change in our view of space and time. Its aim is to foster a deep understanding of relativistic spacetime and its consequences for Dynamics.
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today
This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.