Download Free An Introduction To Relativistic Gravitation Book in PDF and EPUB Free Download. You can read online An Introduction To Relativistic Gravitation and write the review.

Best-selling, accessible physics-first introduction to GR uses minimal new mathematics and begins with the essential physical applications.
This is an introductory textbook on applications of general relativity to astrophysics and cosmology. The aim is to provide graduate students with a toolkit for understanding astronomical phenomena that involve velocities close to that of light or intense gravitational fields. The approach taken is first to give the reader a thorough grounding in special relativity, with space-time the central concept, following which general relativity presents few conceptual difficulties. Examples of relativistic gravitation in action are drawn from the astrophysical domain. The book can be read on two levels: first as an introductory fast-track course, and then as a detailed course reinforced by problems which illuminate technical examples. The book has extensive links to the literature of relativistic astrophysics and cosmology.
The contemporary theoretical physics consists, by and large, of two independent parts. The rst is the quantum theory describing the micro-world of elementary p- ticles, the second is the theory of gravity that concerns properties of macroscopic systems such as stars, galaxies, and the universe. The relativistic theory of gr- itation which is known as general relativity was created, at the beginning of the last century, by more or less a single man from pure idea combinations and bold guessing. The task was to “marry” the theory of gravity with the theory of special relativity. The rst attempts were aimed at considering the gravitational potential as a eld in Minkowski space–time. All those attempts failed; it took 10 years until Einstein nally solved the problem. The dif culty was that the old theory of gravity as well as the young theory of special relativity had to be modi ed. The next 50 years were dif cult for this theory because its experimental basis remained weak and its complicated mathematical structure was not well understood. However, in the subsequent period this theory ourished. Thanks to improvements in the te- nology and to the big progress in the methods of astronomical observations, the amount of observable facts to which general relativity is applicable was consid- ably enlarged. This is why general relativity is, today, one of the best experimentally tested theories while many competing theories could be disproved. Also the conc- tual and mathematical fundamentals are better understood now.
The revised and updated 2nd edition of this established textbook provides a self-contained introduction to the general theory of relativity, describing not only the physical principles and applications of the theory, but also the mathematics needed, in particular the calculus of differential forms. Updated throughout, the book contains more detailed explanations and extended discussions of several conceptual points, and strengthened mathematical deductions where required. It includes examples of work conducted in the ten years since the first edition of the book was published, for example the pedagogically helpful concept of a "river of space" and a more detailed discussion of how far the principle of relativity is contained in the general theory of relativity. Also presented is a discussion of the concept of the 'gravitational field' in Einstein's theory, and some new material concerning the 'twin paradox' in the theory of relativity. Finally, the book contains a new section about gravitational waves, exploring the dramatic progress in this field following the LIGO observations. Based on a long-established masters course, the book serves advanced undergraduate and graduate level students, and also provides a useful reference for researchers.
This is an excellent introduction to the subjects of gravitation and space-time structure. It discusses the foundations of Riemann geometry; the derivation of Einstein field equations; linearised theory; far fields and gravitational waves; the invariant characterisation of exact solutions; gravitational collapse; cosmology as well as alternative gravitational theories and the problem of quantum gravity.
This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.
An introduction to Einstein's general theory of relativity, this work is structured so that interesting applications, such as gravitational lensing, black holes and cosmology, can be presented without the readers having to first learn the difficult mathematics of tensor calculus.
Following the approach of Lev Landau and Evgenii Lifshitz, this book introduces the theory of special and general relativity with the Lagrangian formalism and the principle of least action. This method allows the complete theory to be constructed starting from a small number of assumptions, and is the most natural approach in modern theoretical physics. The book begins by reviewing Newtonian mechanics and Newtonian gravity with the Lagrangian formalism and the principle of least action, and then moves to special and general relativity. Most calculations are presented step by step, as is done on the board in class. The book covers recent advances in gravitational wave astronomy and provides a general overview of current lines of research in gravity. It also includes numerous examples and problems in each chapter.
This book is an introduction to Lagrangian mechanics, starting with Newtonian physics and proceeding to topics such as relativistic Lagrangian fields and Lagrangians in General Relativity, electrodynamics, Gauge theory, and relativistic gravitation. The mathematical notation used is introduced and explained as the book progresses, so it can be understood by students at the undergraduate level in physics or applied mathmatics, yet it is rigorous enough to serve as an introduction to the mathematics and concepts required for courses in relativistic quantum field theory and general relativity.
Spacetime physics -- Physics in flat spacetime -- The mathematics of curved spacetime -- Einstein's geometric theory of gravity -- Relativistic stars -- The universe -- Gravitational collapse and black holes -- Gravitational waves -- Experimental tests of general relativity -- Frontiers