Download Free An Introduction To Radiobiology Book in PDF and EPUB Free Download. You can read online An Introduction To Radiobiology and write the review.

This new edition of A.H.W. Nias' successful book provides an updated and revised introduction to quantitative radiobiology, particularly, to those aspects of the subject which have a practical application. Radiation is used to cure cancer but can also cause it. Radiation is also used in medical diagnosis and in nuclear power stations. In these areas, where questions of benefit and detriment arise, the biological effects of the radiation can now be predicted. There are few aspects of life where risk estimates are so firmly founded on quantitative data. This is not only because of the precision with which radiation dose can be measured but also because of the large body of radiobiological observations which have been made since X-rays were discovered. Written by a scientist with many years experience in the field, An Introduction to Radiobiology will appeal to a wide variety of readers who need to understand the mechanisms by which ionizing radiation causes cellular damage. It will be of interest to technologists in radiation therapy, nuclear medicine and diagnostic radiography, cancer research students and technicians, medical physicists, trainee radiotherapists and nuclear medicine specialists. Reviews of the First Edition: "In summary, this is an excellent general text that should fill an important gap in many teaching needs, especially those where the major focus is on the biological effects of radiation on humans." Journal of the National Cancer Institute "This is undoubtedly one of the better introductions to the subject which I have read, and I would certainly recommend it not only to beginners but also to mature students of the subject." The British Journal of Radiology
This textbook covers many aspects of radiation, radiotherapy and their effects. It includes a discussion of recent advances, such as the molecular basis of cellular effects and cell radiosensitivity, radiocarcinogenesis and how radiotherapy can affect normal and neoplastic tissues.
In print since 1972, this seventh edition of Radiobiology for the Radiologist is the most extensively revised to date. It consists of two sections, one for those studying or practicing diagnostic radiolo, nuclear medicine and radiation oncology; the other for those engaged in the study or clinical practice of radiation oncology--a new chapter, on radiologic terrorism, is specifically for those in the radiation sciences who would manage exposed individuals in the event of a terrorist event. The 17 chapters in Section I represent a general introduction to radiation biology and a complete, self-contained course especially for residents in diagnostic radiology and nuclear medicine that follows the Syllabus in Radiation Biology of the RSNA. The 11 chapters in Section II address more in-depth topics in radiation oncology, such as cancer biology, retreatment after radiotherapy, chemotherapeutic agents and hyperthermia. Now in full color, this lavishly illustrated new edition is replete with tables and figures that underscore essential concepts. Each chapter concludes with a "summary of pertinent conclusions" to facilitate quick review and help readers retain important information.
Provides an introduction to quantitative radiobiology with emphasis on practical aspects of the subject. Readers will gain a ready understanding of both the very fast processes which initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. Among the topics considered are reparable damage, densely ionizing radiation, normal and malignant cells and whole body regulation. These and other aspects of radiation biology are described in detail at a level appropriate to readers with a basic knowledge of mammalian cell biology.
This book provides a qualitative and quantitative exploration of the action of radiation on living matter which leads to a complete and coherent interpretation of radiation biology. It takes readers from radiation-induced molecular damage in the nucleus of the cell and links this damage to cellular effects such as cell killing, chromosome aberrations and mutations before exploring organ damage, organism lethality and cancer induction. It also deals with radiological protection concepts and the difficulties of predicting the dose–effect relationship for low-dose and dose rate radiation risk. The book ends with separate chapters dealing with the effects of UV light exposure and risk classification of chemical mutagens, both of which are derived by logical extensions of the radiation model. This book will provide the basic foundations of radiation biology for undergraduate and graduate students in medical physics, biomedical engineering, radiological protection, medicine, radiology and radiography. Features Presents a comprehensive insight into radiation action on living matter Contains important implications for radiological protection and regulations Provides analytical methods for applications in radiotherapy
This textbook covers all aspects of radiation, radiotherapy and their effects. The book, initially published in France, has been updated and expanded in this English version. It includes a thorough discussion of recent advances, such as a better understanding of the molecular basis of cellular effects and cell radiosensitivity.There is a study of the mechanmism by which dose and overall duration of radiotherapy can introoduce differential effects between normal and neoplastic tissues and recent data on radiocarcinogenesis in man and experimental animals is provided.
This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.
A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.
Fundamentals of Radiation Biology presents a contemporary, comprehensive review of the interactions between ionizing radiations and biological materials, tracking the consequences to three inevitable endpoints: cell restitution, cell death, or cell transformation.The introductory narrative is followed by examination of larger scale phenomena including tissue responses to radiation injury, organ failure modes, and resultant human illness including cancer. Ultimately, Fundamentals of Radiation Biology considers circumstantial radiation incidents impacting biological systems including radiological terrorism and radiation pollution remediation. Chapters presenting an overview of carcinogenesis and radiation therapy techniques based in radiobiology discuss two significant expansions central to the concerns of the text.This book takes an unprecedented narrative approach to radiobiology; each chapter expands on the fundamentals surveyed previously to lead the reader steadily to a panorama of radiation biocomplexity. No biological event happens in isolation. Actions evoke reactions that alter structures and cause living systems to adapt. It also examines the components constituting mammalian radiation response machinery and correlates them with resultant physiological behaviors.