Download Free An Introduction To Prestressed Concrete Book in PDF and EPUB Free Download. You can read online An Introduction To Prestressed Concrete and write the review.

The book begins with a brief introduction, helping the reader to understand the fundamentals of stress concept and prestressed concrete systems. The discussion then follows to explain the computation of different losses and estimation of ultimate flexural and shear strength. Important codal provisions viz. IS1343-2012, Eurocode EN2 and BSEN-1:2004 are also highlighted in this text. For clear understanding of the materials, the text is supported by a good number of figures and tables. Besides covering the important topics on design and analysis of anchorage zone stresses and analysis of continuous beam, the book also discusses composite construction and circular prestressing. The book is designed as a textbook for the senior level undergraduate and postgraduate students of civil engineering and construction technology. KEY FEATURES
Ordinary concrete is strong in compression but weak in tension. Even reinforced concrete, where steel bars are used to take up the tension that the concrete cannot resist, is prone to cracking and corrosion under low loads. Prestressed concrete is highly resistant to stress, and is used as a building material for bridges, tanks, shell roofs, floors
Die zweite Auflage dieses Klassikers - jetzt als Paperback - bietet Profis auf diesem Gebiet eine aktuelle und kompetente Präsentation der Technologie der Vorbelastung von Stahlbeton. Grundlegende Techniken, Materialien und Systeme werden behandelt und vielfältige Anwendungen - Gebäude, Brücken, Bohrplattformen, Straßen, Rollbahnen, Rohrleitungen - erläutert.
Building with precast concrete elements is one of the most innovative forms of construction. This book serves as an introduction to this topic, including examples, and thus supplies all the information necessary for conceptual and detailed design.
Completely revised to reflect the new ACI 318-08 Building Code and International Building Code, IBC 2009, this popular book offers a unique approach to examining the design of prestressed concrete members in a logical, step-by-step trial and adjustment procedure. Integrates handy flow charts to help readers better understand the steps needed for design and analysis. Includes a revised chapter containing the latest ACI and AASHTO Provisions on the design of post-tensioned beam end anchorage blocks using the strut-and-tie approach in conformity with ACI 318-08 Code. Offers a new complete section with two extensive design examples using the strut-and-tie approach for the design of corbels and deep beams. Features an addition to the elastic method of design, with comprehensive design examples on LRFD and Standard AASHTO designs of bridge deck members for flexure, shear and torsion, conforming to the latest AASHTO specifications. Includes a revised chapter on slender columns, including a simplified load-contour biaxial bending method which is easier to apply in desiign, using moments rather than loads in the reciprocal approach. A useful construction reference for engineers.
The third edition of this authoritative handbook provides the structural designer with comprehensive guidance on prestressed concrete and its effective use, covering materials, behaviour, analysis and design of prestressed elements. It includes numerous examples, design charts and details of post-tensioning systems.
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.
This book presents a selection of the author‘s firsthand experience with incidents related to reinforced and prestressed concrete structures, helping readers gain an understanding of errors that can occur in order to avoid making them. He includes mistakes discovered at the design stage, ones that led to failures, and some that involved partial structure collapse all of which required remedial action to ensure safety. The book focuses on specific incidents that occurred at various points in the construction process, including mistakes related to structural misunderstanding, extrapolation of codes of practice, and poor construction.