Download Free An Introduction To Nuclear Fission Book in PDF and EPUB Free Download. You can read online An Introduction To Nuclear Fission and write the review.

This hands-on textbook introduces physics and nuclear engineering students to the experimental and theoretical aspects of fission physics for research and applications through worked examples and problem sets. The study of nuclear fission is currently undergoing a renaissance. Recent advances in the field create the opportunity to develop more reliable models of fission predictability and to supply measurements and data to critical applications including nuclear energy, national security and counter-proliferation, and medical isotope production. An Introduction to Nuclear Fission provides foundational knowledge for the next generation of researchers to contribute to nuclear fission physics.
This book brings together various aspects of the nuclear fission phenomenon discovered by Hahn, Strassmann and Meitner almost 70 years ago. Beginning with an historical introduction the authors present various models to describe the fission process of hot nuclei as well as the spontaneous fission of cold nuclei and their isomers. The role of transport coefficients, like inertia and friction in fission dynamics is discussed. The effect of the nuclear shell structure on the fission probability and the mass and kinetic energy distributions of the fission fragments is presented. The fusion-fission process leading to the synthesis of new isotopes including super-heavy elements is described. The book will thus be useful for theoretical and experimental physicists, as well as for graduate and PhD students.
This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that can be easily followed by wider circles of readers. The addition of solved problems, strategically placed throughout the text, and the collections of problems at the end of the chapters allow readers to appreciate the quantitative aspects of various phenomena and processes. Many illustrations and graphs effectively supplement the text and help visualising specific points.
This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, radiation, and reactors, along with a discussion of wastes and weapons. A minimum of mathematical background is required, but there is ample opportunity to learn characteristic numbers through the illustrative calculations and the exercises. An updated Solution Manual is available to the instructor. A new feature to aid the student is a set of some 50 Computer Exercises, using a diskette of personal computer programs in BASIC and spreadsheet, supplied by the author at a nominal cost. The book is of principal value as an introduction to nuclear science and technology for early college students, but can be of benefit to science teachers and lecturers, nuclear utility trainees and engineers in other fields.
Following the increasing cost of fossil fuels and concerns about the security of their future supply. However, the term 'nuclear power' causes anxiety in many people and there is confusion concerning the nature and extent of the associated risks.
Nuclear Fission provides a comprehensive account of nuclear fission. This book is organized into 14 chapters. Chapter I introduces and discusses the discovery of fission, followed by a treatment of transition nucleus in Chapters II to VIII. Chapter IX deals with the theories of mass and energy distributions. The kinetic energy release in fission is described in Chapter X, while the distribution of mass and charge in fission is considered in Chapter XI. Chapters XII and XIII consider the emission of neutrons and ? rays from fission. Detailed studies of the ? particles accompanying fission are covered in the last chapter. This volume is intended for students, but is also valuable to research scientists interested in the physics and chemistry of fission.
Nuclear Engineering: A Conceptual Introduction to Nuclear Power provides coverage of the introductory, salient principles of nuclear engineering in a comprehensive manner for those entering the profession at the end of their degree. The nuclear power industry is undergoing a renaissance because of the desire for low-carbon baseload electricity, the growing population, and environmental concerns about shale gas, so this book is a welcomed addition to the science. In addition, users will find a great deal of information on the change in the industry, along with other topical areas of interest that are uniquely covered. Intended for undergraduate students or early postgraduate students studying nuclear engineering, this new text will also be appealing to scientifically-literate non-experts wishing to be better informed about the 'nuclear option'. - Presents a succinct and clear explanation of the key facts and concepts on how nuclear engineering power systems function and how their related fuel supply cycles operate - Provides full coverage of the nuclear fuel cycle, including its scientific and historical basis - Describes a comprehensive range of relevant reactor designs, from those that are defunct, current, and in plan/construction for the future, including SMRs and GenIV - Summarizes all major accidents and their impact on the industry and society
An accessible introduction to nuclear and particle physics with equal coverage of both topics, this text covers all the standard topics in particle and nuclear physics thoroughly and provides a few extras, including chapters on experimental methods; applications of nuclear physics including fission, fusion and biomedical applications; and unsolved problems for the future. It includes basic concepts and theory combined with current and future applications. An excellent resource for physics and astronomy undergraduates in higher-level courses, this text also serves well as a general reference for graduate studies.
Until the publication of Introduction to Nuclear Reactions, an introductory reference on nonrelativistic nuclear reactions had been unavailable. Providing a concise overview of nuclear reactions, this reference discusses the main formalisms, ranging from basic laws to the final formulae used to calculate measurable quantities. Well known in their fields, the authors begin with a discussion of scattering theory followed by a study of its applications to specific nuclear reactions. Early chapters give a framework of scattering theory that can be easily understood by the novice. These chapters also serve as an introduction to the underlying physical ideas. The largest section of the book comprises the physical models that have been developed to account for the various aspects of nuclear reaction phenomena. The final chapters survey applications of the eikonal wavefunction to nuclear reactions as well as examine the important branch of nuclear transport equations. By combining a thorough theoretical approach with applications to recent experimental data, Introduction to Nuclear Reactions helps you understand the results of experimental measurements rather than describe how they are made. A clear treatment of the topics and coherent organization make this information understandable to students and professionals with a solid foundation in physics as well as to those with a more general science and technology background.
A clear and concise introduction to nuclear physics suitable for a core undergraduate physics course.