Download Free An Introduction To Nonlinear Image Processing Book in PDF and EPUB Free Download. You can read online An Introduction To Nonlinear Image Processing and write the review.

From a strict semantic point of view, nonlinear image processing encompasses all image processing that is not based on linear operators; however, from a practical, evolutionary point of view, the name itself is usually associated with the study of nonlinear filters, mainly the deterministic and nondeterministic analysis and design of logic-based operators. This Tutorial Text volume explores logic-based operators with emphasis on representation, design, and statistical optimization of nonlinear filters.
Nonlinear Digital Filters provides an easy to understand overview of nonlinear behavior in digital filters, showing how it can be utilized or avoided when operating nonlinear digital filters. It gives techniques for analyzing discrete-time systems with discontinuous linearity, enabling the analysis of other nonlinear discrete-time systems, such as sigma delta modulators, digital phase lock loops, and turbo coders. It uses new methods based on symbolic dynamics, enabling the engineer to easily operate reliable nonlinear digital filters. It gives practical, 'real-world' applications of nonlinear digital filters and contains many examples. The book is ideal for professional engineers working with signal processing applications, as well as advanced undergraduates and graduates conducting a nonlinear filter analysis project. Uses new methods based on symbolic dynamics, enabling the engineer more easily to operate reliable nonlinear digital filters Gives practical, "real-world" applications of nonlinear digital filter Includes many examples.
A complete introduction to the basic and intermediate concepts of image processing from the leading people in the field Up-to-date content, including statistical modeling of natural, anistropic diffusion, image quality and the latest developments in JPEG 2000 This comprehensive and state-of-the art approach to image processing gives engineers and students a thorough introduction, and includes full coverage of key applications: image watermarking, fingerprint recognition, face recognition and iris recognition and medical imaging. "This book combines basic image processing techniques with some of the most advanced procedures. Introductory chapters dedicated to general principles are presented alongside detailed application-orientated ones. As a result it is suitably adapted for different classes of readers, ranging from Master to PhD students and beyond." – Prof. Jean-Philippe Thiran, EPFL, Lausanne, Switzerland "Al Bovik’s compendium proceeds systematically from fundamentals to today’s research frontiers. Professor Bovik, himself a highly respected leader in the field, has invited an all-star team of contributors. Students, researchers, and practitioners of image processing alike should benefit from the Essential Guide." – Prof. Bernd Girod, Stanford University, USA "This book is informative, easy to read with plenty of examples, and allows great flexibility in tailoring a course on image processing or analysis." – Prof. Pamela Cosman, University of California, San Diego, USA A complete and modern introduction to the basic and intermediate concepts of image processing – edited and written by the leading people in the field An essential reference for all types of engineers working on image processing applications Up-to-date content, including statistical modelling of natural, anisotropic diffusion, image quality and the latest developments in JPEG 2000
Nonlinear Digital Filtering with Python: An Introduction discusses important structural filter classes including the median filter and a number of its extensions (e.g., weighted and recursive median filters), and Volterra filters based on polynomial nonlinearities. Adopting both structural and behavioral approaches in characterizing and designing nonlinear digital filters, this book: Begins with an expedient introduction to programming in the free, open-source computing environment of Python Uses results from algebra and the theory of functional equations to construct and characterize behaviorally defined nonlinear filter classes Analyzes the impact of a range of useful interconnection strategies on filter behavior, providing Python implementations of the presented filters and interconnection strategies Proposes practical, bottom-up strategies for designing more complex and capable filters from simpler components in a way that preserves the key properties of these components Illustrates the behavioral consequences of allowing recursive (i.e., feedback) interconnections in nonlinear digital filters while highlighting a challenging but promising research frontier Nonlinear Digital Filtering with Python: An Introduction supplies essential knowledge useful for developing and implementing data cleaning filters for dynamic data analysis and time-series modeling.
This text covers key mathematical principles and algorithms for nonlinear filters used in image processing. Readers will gain an in-depth understanding of the underlying mathematical and filter design methodologies needed to construct and use nonlinear filters in a variety of applications.
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
This text provides insight into the design of optimal image processing operators for implementation directly into digital hardware. Starting with simple restoration examples and using the minimum of statistics, the book provides a design strategy for a wide range of image processing applications. The text is aimed principally at electronics engineers and computer scientists, but will also be of interest to anyone working with digital images.
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.
This state-of-the-art book deals with the most important aspects of non-linear imaging challenges. The need for engineering and mathematical methods is essential for defining non-linear effects involved in such areas as computer vision, optical imaging, computer pattern recognition, and industrial automation challenges.