Download Free An Introduction To Module Theory Book in PDF and EPUB Free Download. You can read online An Introduction To Module Theory and write the review.

This textbook provides a self-contained course on the basic properties of modules and their importance in the theory of linear algebra. The first 11 chapters introduce the central results and applications of the theory of modules. Subsequent chapters deal with advanced linear algebra, including multilinear and tensor algebra, and explore such topics as the exterior product approach to the determinants of matrices, a module-theoretic approach to the structure of finitely generated Abelian groups, canonical forms, and normal transformations. Suitable for undergraduate courses, the text now includes a proof of the celebrated Wedderburn-Artin theorem which determines the structure of simple Artinian rings.
An introduction to module theory for students with some knowledge of linear algebra and elementary ring theory. Expounds the basics of module theory, including methods of comparing, constructing and decomposing modules, then presents the structure theory of modules over Euclidean domains. Concluding chapters look at two standard forms for a square matrix, and projective modules over rings in general. Annotation copyrighted by Book News, Inc., Portland, OR
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
First year graduate algebra text. The choice of topics is guided by the underlying theme of modules as a basic unifying concept in mathematics. Beginning with standard topics in group and ring theory, the authors then develop basic module theory and its use in investigating bilinear, sesquilinear, and quadratic forms. Annotation copyrighted by Book News, Inc., Portland, OR
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
The notions of torsion and torsion freeness have played a very important role in module theory--particularly in the study of modules over integral domains. Furthermore, the use of homological techniques in this connection has been well established. It is the aim of this paper to extend these techniques and to show that this extension leads naturally to several new concepts (e.g. k-torsion freeness and Gorenstein dimension) which are useful in the classification of modules and rings.
This book presents topics in module theory and ring theory: some, such as Goldie dimension and semiperfect rings are now considered classical and others more specialized, such as dual Goldie dimension, semilocal endomorphism rings, serial rings and modules.
This book is an introduction to the theory of rings and modules that goes beyond what one normally obtains in a graduate course in abstract algebra. In addition to the presentation of standard topics in ring and module theory, it also covers category theory, homological algebra and even more specialized topics like injective envelopes and proj
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.