Download Free An Introduction To Modern Vehicle Design Book in PDF and EPUB Free Download. You can read online An Introduction To Modern Vehicle Design and write the review.

An Introduction to Modern Vehicle Design starts from basic principles and builds up analysis procedures for all major aspects of vehicle and component design. Subjects of current interest to the motor industry - such as failure prevention, designing with modern material, ergonomics, and control systems - are covered in detail, with a final chapter discussing future trends in automotive design. Extensive use of illustrations, examples, and case studies provides the reader with a thorough understanding of design issues and analysis methods.
This book introduces the concept of software architecture as one of the cornerstones of software in modern cars. Following a historical overview of the evolution of software in modern cars and a discussion of the main challenges driving that evolution, Chapter 2 describes the main architectural styles of automotive software and their use in cars’ software. Chapter 3 details this further by presenting two modern architectural styles, i.e. centralized and federated software architectures. In Chapter 4, readers will find a description of the software development processes used to develop software on the car manufacturers’ side. Chapter 5 then introduces AUTOSAR – an important standard in automotive software. Chapter 6 goes beyond simple architecture and describes the detailed design process for automotive software using Simulink, helping readers to understand how detailed design links to high-level design. The new chapter 7 reports on how machine learning is exploited in automotive software e.g. for image recognition and how both on-board and off-board learning are applied. Next, Chapter 8 presents a method for assessing the quality of the architecture – ATAM (Architecture Trade-off Analysis Method) – and provides a sample assessment, while Chapter 9 presents an alternative way of assessing the architecture, namely by using quantitative measures and indicators. Subsequently Chapter 10 dives deeper into one of the specific properties discussed in Chapter 8 – safety – and details an important standard in that area, the ISO/IEC 26262 norm. Lastly, Chapter 11 presents a set of future trends that are currently emerging and have the potential to shape automotive software engineering in the coming years. This book explores the concept of software architecture for modern cars and is intended for both beginning and advanced software designers. It mainly aims at two different groups of audience – professionals working with automotive software who need to understand concepts related to automotive architectures, and students of software engineering or related fields who need to understand the specifics of automotive software to be able to construct cars or their components. Accordingly, the book also contains a wealth of real-world examples illustrating the concepts discussed and requires no prior background in the automotive domain. Compared to the first edition, besides the two new chapters 3 and 7 there are considerable updates in chapters 5 and 8 especially.
"This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.
See what really goes into every aspect of car design.
The motor vehicle technology covered in this book has become in the more than 125 years of its history in many aspects an extremely complex and, in many areas of engineering science . Motor vehicles must remain functional under harsh environmental conditions and extreme continuous loads and must also be reliably brought into a safe state even in the event of a failure by a few trained operators. The automobile is at the same time a mass product, which must be produced in millions of pieces and at extremely low cost. In addition to the fundamentals of current vehicle systems, the book also provides an overview of future developments such as, for example, in the areas of electromobility, alternative drives and driver assistance systems. The basis for the book is a series of lectures on automotive engineering, which has been offered by the first-named author at the University of Duisburg-Essen for many years. Starting from classical systems in the automobile, the reader is given a systemic view of modern motor vehicles. In addition to the pure basic function, the modeling of individual (sub-) systems is also discussed. This gives the reader a deep understanding of the underlying principles. In addition, the book with the given models provides a basis for the practical application in the area of ​​simulation technology and thus achieves a clear added value against books, which merely explain the function of a system without entering into the modeling. On the basis of today's vehicle systems we will continue to look at current and future systems. In addition to the state-of-the-art, the reader is thus taught which topics are currently dominant in research and which developments can be expected for the future. In particular, a large number of practical examples are provided directly from the vehicle industry. Especially for students of vehicle-oriented study courses and lectures, the book thus enables an optimal preparation for possible future fields of activity.
In the introduction of Automotive Engineering Fundamentals, Richard Stone and Jeffrey K. Ball provide a fascinating and often amusing history of the passenger vehicle, showcasing the various highs and lows of this now-indispensable component of civilized societies. The authors then provide an overview of the publication, which is designed to give the student of automotive engineering a basic understanding of the principles involved with designing a vehicle. From engines and transmissions to vehicle aerodynamics and computer modeling, the intelligent, interesting presentation of core concepts in Automotive Engineering Fundamentals is sure to make this an indispensable resource for engineering students and professionals alike.
Modern Automotive Technology details the construction, operation, diagnosis, service, and repair of late-model automobiles and light trucks. This comprehensive text uses a building block approach that starts with the fundamental principles of system operation and progresses gradually to complex diagnostic and service procedures. Short sentences, concise definitions, and thousands of color illustrations help students learn quickly and easily The 1998 edition has been extensively revised and provides thorough coverage of the latest developments in the automotive field, including OBD II diagnostics, IM 240 testing, misfire monitoring, air bag systems, anti-lock brakes, and security systems. Organized around the eight ASE automobile test areas, this text is a valuable resource for students preparing for a career in automotive technology, as well as experienced technicians preparing for the ASE Certification/Recertification Tests.