Download Free An Introduction To Minimax Theorems And Their Applications To Differential Equations Book in PDF and EPUB Free Download. You can read online An Introduction To Minimax Theorems And Their Applications To Differential Equations and write the review.

The book is intended to be an introduction to critical point theory and its applications to differential equations. Although the related material can be found in other books, the authors of this volume have had the following goals in mind: To present a survey of existing minimax theorems, To give applications to elliptic differential equations in bounded domains, To consider the dual variational method for problems with continuous and discontinuous nonlinearities, To present some elements of critical point theory for locally Lipschitz functionals and give applications to fourth-order differential equations with discontinuous nonlinearities, To study homoclinic solutions of differential equations via the variational methods. The contents of the book consist of seven chapters, each one divided into several sections. Audience: Graduate and post-graduate students as well as specialists in the fields of differential equations, variational methods and optimization.
Many boundary value problems are equivalent to Au=O (1) where A : X --+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional rand inf.
The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.
Using minimax methods, some existence theorems are proved for critical points of a real valued function on a Banach space. The critical points are of a saddle point type. Applications are made to semilinear elliptic partial differential equations. A perturbation theorem for the critical points is also proved in this context. Lastly applications are made to a family of nonlinear wave equations.
The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 October 1996 at the "G. Stampacchia" International School of Mathematics of the "E. Majorana" Centre for Scientific Cul ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y , one tries to find conditions that ensure the validity of the equality sup inf f(x,y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to enter into the technical details of the proofs of minimax theorems, or into the history of the contribu tions to the solution of this basic problem in the last 7 decades. But we do want to stress its intrinsic interest and point out that, in spite of its extremely simple formulation, it conceals a great wealth of ideas. This is clearly shown by the large variety of methods and tools that have been used to study it. The applications of minimax theory are also extremely interesting. In fact, the need for the ability to "switch quantifiers" arises in a seemingly boundless range of different situations. So, the good quality of a minimax theorem can also be judged by its applicability. We hope that this volume will offer a rather complete account of the state of the art of the subject.
This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using "nonstandard analysis." Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible to study the diffusion and the jump part using essentially the same methods. This setting has the advantage of being independent of special topological properties of the state space and in this sense is a natural one, valid for both finite- and infinite-dimensional spaces. The present monograph provides a thorough treatment of the symmetric as well as the non-symmetric case, surveys the theory of hyperfinite Lévy processes, and summarizes in an epilogue the model-theoretic genericity of hyperfinite stochastic processes theory.
Estimating unknown parameters based on observation data conta- ing information about the parameters is ubiquitous in diverse areas of both theory and application. For example, in system identification the unknown system coefficients are estimated on the basis of input-output data of the control system; in adaptive control systems the adaptive control gain should be defined based on observation data in such a way that the gain asymptotically tends to the optimal one; in blind ch- nel identification the channel coefficients are estimated using the output data obtained at the receiver; in signal processing the optimal weighting matrix is estimated on the basis of observations; in pattern classifi- tion the parameters specifying the partition hyperplane are searched by learning, and more examples may be added to this list. All these parameter estimation problems can be transformed to a root-seeking problem for an unknown function. To see this, let - note the observation at time i. e. , the information available about the unknown parameters at time It can be assumed that the parameter under estimation denoted by is a root of some unknown function This is not a restriction, because, for example, may serve as such a function.
Geared toward students of mathematical programming, this user-friendly text offers a thorough introduction to the part of optimization theory that lies between approximation theory and mathematical programming. 37 illustrations. 1974 edition.
Many nonlinear problems in physics, engineering, biology and social sciences can be reduced to finding critical points of functionals. While minimax and Morse theories provide answers to many situations and problems on the existence of multiple critical points of a functional, they often cannot provide much-needed additional properties of these critical points. Sign-changing critical point theory has emerged as a new area of rich research on critical points of a differentiable functional with important applications to nonlinear elliptic PDEs. This book is intended for advanced graduate students and researchers involved in sign-changing critical point theory, PDEs, global analysis, and nonlinear functional analysis.
The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.