Download Free An Introduction To Local Spectral Theory Book in PDF and EPUB Free Download. You can read online An Introduction To Local Spectral Theory and write the review.

Modern local spectral theory is built on the classical spectral theorem, a fundamental result in single-operator theory and Hilbert spaces. This book provides an in-depth introduction to the natural expansion of this fascinating topic of Banach space operator theory. It gives complete coverage of the field, including the fundamental recent work by Albrecht and Eschmeier which provides the full duality theory for Banach space operators. One of its highlights are the many characterizations of decomposable operators, and of other related, important classes of operators, including identifications of distinguished parts, and results on permanence properties of spectra with respect to several types of similarity. Written in a careful and detailed style, it contains numerous examples, many simplified proofs of classical results, extensive references, and open problems, suitable for continued research.
The intention of this book is to introduce students to active areas of research in mathematical physics in a rather direct way minimizing the use of abstract mathematics. The main features are geometric methods in spectral analysis, exponential decay of eigenfunctions, semi-classical analysis of bound state problems, and semi-classical analysis of resonance. A new geometric point of view along with new techniques are brought out in this book which have both been discovered within the past decade. This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace.
A signi?cant sector of the development of spectral theory outside the classical area of Hilbert space may be found amongst at multipliers de?ned on a complex commutative Banach algebra A. Although the general theory of multipliers for abstract Banach algebras has been widely investigated by several authors, it is surprising how rarely various aspects of the spectral theory, for instance Fredholm theory and Riesz theory, of these important classes of operators have been studied. This scarce consideration is even more surprising when one observes that the various aspects of spectral t- ory mentioned above are quite similar to those of a normal operator de?ned on a complex Hilbert space. In the last ten years the knowledge of the spectral properties of multip- ers of Banach algebras has increased considerably, thanks to the researches undertaken by many people working in local spectral theory and Fredholm theory. This research activity recently culminated with the publication of the book of Laursen and Neumann [214], which collects almost every thing that is known about the spectral theory of multipliers.
This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.
The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.
This monograph concerns the relationship between the local spectral theory and Fredholm theory of bounded linear operators acting on Banach spaces. The purpose of this book is to provide a first general treatment of the theory of operators for which Weyl-type or Browder-type theorems hold. The product of intensive research carried out over the last ten years, this book explores for the first time in a monograph form, results that were only previously available in journal papers. Written in a simple style, with sections and chapters following an easy, natural flow, it will be an invaluable resource for researchers in Operator Theory and Functional Analysis. The reader is assumed to be familiar with the basic notions of linear algebra, functional analysis and complex analysis.
Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.
Introduces the basic tools in spectral analysis using numerous examples from the Schrödinger operator theory and various branches of physics.
In view of the eminent importance of spectral theory of linear operators in many fields of mathematics and physics, it is not surprising that various attempts have been made to define and study spectra also for nonlinear operators. This book provides a comprehensive and self-contained treatment of the theory, methods, and applications of nonlinear spectral theory. The first chapter briefly recalls the definition and properties of the spectrum and several subspectra for bounded linear operators. Then some numerical characteristics for nonlinear operators are introduced which are useful for describing those classes of operators for which there exists a spectral theory. Since spectral values are closely related to solvability results for operator equations, various conditions for the local or global invertibility of a nonlinear operator are collected in the third chapter. The following two chapters are concerned with spectra for certain classes of continuous, Lipschitz continuous, or differentiable operators. These spectra, however, simply adapt the corresponding definitions from the linear theory which somehow restricts their applicability. Other spectra which are defined in a completely different way, but seem to have useful applications, are defined and studied in the following four chapters. The remaining three chapters are more application-oriented and deal with nonlinear eigenvalue problems, numerical ranges, and selected applications to nonlinear problems. The only prerequisite for understanding this book is a modest background in functional analysis and operator theory. It is addressed to non-specialists who want to get an idea of the development of spectral theory for nonlinear operators in the last 30 years, as well as a glimpse of the diversity of the directions in which current research is moving.